Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 24,078 Bytes
925b37d d8fc35e 925b37d 7291625 925b37d 6a82c4e 925b37d b8a7697 925b37d 6a82c4e 925b37d 6a82c4e 925b37d b8a7697 925b37d b8a7697 925b37d 18668e8 925b37d 7291625 925b37d 7575641 925b37d 7291625 925b37d 18668e8 925b37d 18668e8 925b37d 6a82c4e 925b37d 7291625 925b37d 7575641 925b37d 7291625 925b37d 7291625 925b37d 6a82c4e 925b37d 18668e8 925b37d 18668e8 925b37d 18668e8 925b37d 1da8384 925b37d ed02609 925b37d 1da8384 925b37d fccd3c1 925b37d 863fe74 18668e8 925b37d 6831bc6 925b37d 6a82c4e d8fc35e 6a82c4e 925b37d 18668e8 925b37d 18668e8 d8fc35e 7291625 925b37d 18668e8 7291625 925b37d 18668e8 925b37d 18668e8 5433f8c 0056d04 7291625 0056d04 18668e8 925b37d 863fe74 925b37d 18668e8 863fe74 18668e8 b8a7697 18668e8 7291625 18668e8 7291625 18668e8 b8a7697 18668e8 7291625 18668e8 7291625 18668e8 6831bc6 7291625 18668e8 7291625 18668e8 925b37d 6831bc6 925b37d 18668e8 925b37d 7c5be67 925b37d 18668e8 925b37d b8a7697 6a82c4e b8a7697 925b37d a415db8 925b37d 18668e8 925b37d 0309a76 925b37d e000646 925b37d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import json
import os
import tempfile
from email.utils import parseaddr
from datetime import datetime
from typing import Dict, List, Tuple, Optional
import gradio as gr
import numpy as np
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from datasets import VerificationMode, load_dataset, Dataset
from huggingface_hub import HfApi, snapshot_download
from collections import defaultdict
import seaborn as sns
from content import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
INTRODUCTION_TEXT,
SUBMISSION_TEXT,
PRE_COLUMN_NAMES,
POST_COLUMN_NAMES,
TITLE,
TYPES,
model_hyperlink,
)
from evaluator import evaluate
# Configuration constants
TOKEN = os.environ.get("TOKEN", None)
OWNER = "facebook"
# Dataset repositories
INTERNAL_DATA_DATASET = f"{OWNER}/fairchem_internal"
SUBMISSION_DATASET = f"{OWNER}/fairchem_leaderboard_submissions"
RESULTS_DATASET = f"{OWNER}/fairchem_leaderboard_results"
CONTACT_DATASET = f"{OWNER}/fairchem_leaderboard_contact_info_internal"
LEADERBOARD_PATH = f"{OWNER}/fairchem_leaderboard"
# Initialize HuggingFace API
api = HfApi()
# S2EF subsplits for validation and test data
S2EF_SUBSPLITS = [
"all",
"biomolecules",
"electrolytes",
"metal_complexes",
"neutral_organics",
]
# Evaluation types that are not S2EF
OTHER_EVAL_TYPES = [
"Ligand pocket",
"Ligand strain",
"Conformers",
"Protonation",
"Distance scaling",
"IE_EA",
"Spin gap",
]
# All evaluation types for the dropdown
ALL_EVAL_TYPES = ["Validation", "Test"] + OTHER_EVAL_TYPES
class LeaderboardData:
"""
Manages leaderboard data loading and processing.
"""
def __init__(self):
self._setup_data_paths()
self._load_contact_info()
self._eval_results = None
self._results_dfs = None
def _setup_data_paths(self):
"""
Setup target and result file paths.
"""
target_data_dir = snapshot_download(
repo_id=INTERNAL_DATA_DATASET,
repo_type="dataset",
token=TOKEN,
)
self.target_paths = {
"Validation": f"{target_data_dir}/omol_val_labels.npz",
"Test": f"{target_data_dir}/omol_test_labels.npz",
"Distance Scaling": f"{target_data_dir}/distance_scaling_labels.json",
"Ligand pocket": f"{target_data_dir}/ligand_pocket_labels.json",
"Ligand strain": f"{target_data_dir}/ligand_strain_labels.json",
"Conformers": f"{target_data_dir}/geom_conformers_labels.json",
"Protonation": f"{target_data_dir}/protonation_energies_labels.json",
"IE_EA": f"{target_data_dir}/ieea_labels.json",
"Distance scaling": f"{target_data_dir}/distance_scaling_labels.json",
"Spin gap": f"{target_data_dir}/spingap_labels.json",
}
self.result_paths = {
"Validation": "validation_s2ef.parquet",
"Test": "test_s2ef.parquet",
"Ligand pocket": "ligand_pocket.parquet",
"Ligand strain": "ligand_strain.parquet",
"Conformers": "geom_conformers.parquet",
"Protonation": "protonation.parquet",
"IE_EA": "ie_ea.parquet",
"Distance scaling": "distance_scaling.parquet",
"Spin gap": "spin_gap.parquet",
}
def _load_contact_info(self):
"""
Load contact information dataset.
"""
self.contact_infos = load_dataset(
CONTACT_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode=VerificationMode.NO_CHECKS,
)
def load_eval_data(self) -> Tuple[Dict, Dict[str, pd.DataFrame]]:
"""
Load all evaluation data and return results and dataframes.
"""
if self._eval_results is not None and self._results_dfs is not None:
return self._eval_results, self._results_dfs
# Load S2EF results
s2ef_results = load_dataset(
RESULTS_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode=VerificationMode.NO_CHECKS,
data_files={
"Validation": os.path.join("data", self.result_paths["Validation"]),
"Test": os.path.join("data", self.result_paths["Test"]),
},
)
eval_results = dict(s2ef_results)
# Load other evaluation types
for eval_type in OTHER_EVAL_TYPES:
eval_type_data = load_dataset(
RESULTS_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode=VerificationMode.NO_CHECKS,
data_files={"data": os.path.join("data", self.result_paths[eval_type])},
)
eval_results[eval_type] = eval_type_data["data"]
# Generate result dataframes
results_dfs = {}
# S2EF dataframes
for split in ["Validation", "Test"]:
for subsplit in S2EF_SUBSPLITS:
df_key = f"{split}_{subsplit}"
results_dfs[df_key] = self._get_s2ef_df_from_results(
eval_results, split, subsplit
)
# Other evaluation dataframes
for split in OTHER_EVAL_TYPES:
results_dfs[split] = self._get_eval_df_from_results(eval_results, split)
# Cache the results
self._eval_results = eval_results
self._results_dfs = results_dfs
return eval_results, results_dfs
def _get_s2ef_df_from_results(
self, eval_results: Dict, split: str, subsplit: str
) -> pd.DataFrame:
"""
Generate S2EF dataframe from evaluation results.
"""
local_df = eval_results[split]
local_df = local_df.map(
lambda row: {
"Model": model_hyperlink(
row["model_url"], row["paper_url"], row["Model"]
)
}
)
filtered_columns = (
PRE_COLUMN_NAMES
+ [f"{subsplit}_energy_mae", f"{subsplit}_forces_mae"]
+ POST_COLUMN_NAMES
)
df = pd.DataFrame(local_df)
avail_columns = list(df.columns)
missing_columns = list(set(filtered_columns) - set(avail_columns))
df[missing_columns] = ""
df = df[filtered_columns]
# Unit conversion
for col in df.columns:
if "mae" in col.lower():
df[col] = df[col] * 1000
df = df.sort_values(by=[f"{subsplit}_energy_mae"], ascending=True)
df[f"{subsplit}_energy_mae"] = df[f"{subsplit}_energy_mae"]
df[f"{subsplit}_forces_mae"] = df[f"{subsplit}_forces_mae"]
df = df.rename(
columns={
f"{subsplit}_energy_mae": "Energy MAE\n[meV]",
f"{subsplit}_forces_mae": "Forces MAE\n[meV/Å]",
"Energy Conserving": "Energy\nConserving",
}
)
return df
def _get_eval_df_from_results(self, eval_results: Dict, split: str) -> pd.DataFrame:
"""
Generate evaluation dataframe from results.
"""
local_df = eval_results[split]
local_df = local_df.map(
lambda row: {
"Model": model_hyperlink(
row["model_url"], row["paper_url"], row["Model"]
)
}
)
eval_columns = LEADERBOARD_COLUMNS[split]
filtered_columns = PRE_COLUMN_NAMES + eval_columns + POST_COLUMN_NAMES
df = pd.DataFrame(local_df)
# Filter to only show results after 09/2025, keep v1 for record keeping
df = df[df["Submission date"] > "2025-09"]
avail_columns = list(df.columns)
missing_columns = list(set(filtered_columns) - set(avail_columns))
df[missing_columns] = ""
df = df[filtered_columns]
# Unit conversion
for col in df.columns:
if "mae" in col.lower():
df[col] = df[col] * 1000
df = df.sort_values(by=[eval_columns[0]], ascending=True)
df = df.rename(columns=COLUMN_MAPPING)
return df
leaderboard_data = LeaderboardData()
# Column configurations for different evaluation types
LEADERBOARD_COLUMNS = {
"Ligand pocket": ["interaction_energy_mae", "interaction_forces_mae"],
"Ligand strain": ["strain_energy_mae", "global_min_rmsd"],
"Conformers": ["deltaE_mae", "ensemble_rmsd"],
"Protonation": ["deltaE_mae", "rmsd"],
"Distance scaling": ["lr_ddE_mae", "lr_ddF_mae", "sr_ddE_mae", "sr_ddF_mae"],
"IE_EA": ["deltaE_mae", "deltaF_mae"],
"Spin gap": ["deltaE_mae", "deltaF_mae"],
}
COLUMN_MAPPING = {
"interaction_energy_mae": "Ixn Energy\nMAE [meV]",
"interaction_forces_mae": "Ixn Forces\nMAE [meV/Å]",
"strain_energy_mae": "Strain Energy\nMAE [meV]",
"deltaE_mae": "\u0394Energy MAE\n[meV]",
"deltaF_mae": "\u0394Forces MAE\n[meV/Å]",
"ensemble_rmsd": "RMSD [Å]",
"global_min_rmsd": "RMSD [Å]",
"rmsd": "RMSD [Å]",
"lr_ddE_mae": "\u0394Energy (LR)\n MAE [meV]",
"lr_ddF_mae": "\u0394Forces (LR)\n MAE [meV/Å]",
"sr_ddE_mae": "\u0394Energy (SR)\n MAE [meV]",
"sr_ddF_mae": "\u0394Forces (SR)\n MAE [meV/Å]",
"Energy Conserving": "Energy\nConserving",
}
def add_new_eval(
path_to_file: str,
eval_type: str,
organization: str,
model: str,
model_url: str,
paper_url: str,
energy_conserving: bool,
mail: str,
training_set: str,
additional_info: str,
profile: gr.OAuthProfile,
) -> str:
"""Add a new evaluation to the leaderboard."""
print(f"Adding new eval of type: {eval_type}")
try:
# Validate email address
_, parsed_mail = parseaddr(mail)
if "@" not in parsed_mail:
yield "⚠️ Please provide a valid email address."
return
# Check monthly submission limit (5 submissions per month)
contact_key = eval_type.replace(" ", "_")
user_submission_dates = sorted(
row["date"]
for row in leaderboard_data.contact_infos.get(contact_key, [])
if row["username"] == profile.username
)
current_month = datetime.now().strftime("%Y-%m")
current_month_submissions = [
date for date in user_submission_dates if date.startswith(current_month)
]
if len(current_month_submissions) >= 5:
yield f"⚠️ You have reached the monthly submission limit of 5 submissions. Please try again next month."
return
# Validate file submission
if path_to_file is None:
yield "⚠️ Please upload a file."
return
if not (path_to_file.endswith(".npz") or path_to_file.endswith(".json")):
yield "⚠️ Please submit a valid npz or json file"
return
# Evaluate the submission
yield "⚙️ Evaluating your submission...(do not close/refresh this page!)"
metrics = evaluate(
leaderboard_data.target_paths[eval_type],
path_to_file,
eval_type,
)
submission_time = datetime.today().strftime("%Y-%m-%d-%H:%M")
# Upload submission file
yield "☁️ Uploading submission file..."
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file,
path_in_repo=f"{organization}/{model}/submissions/{training_set}/{contact_key}_{submission_time}_{os.path.basename(path_to_file)}",
repo_type="dataset",
token=TOKEN,
)
# Update leaderboard data
yield "📋 Updating leaderboard data..."
eval_results, _ = leaderboard_data.load_eval_data()
eval_entry = {
"Model": model,
"Organization": organization,
"Submission date": submission_time,
"Training Set": training_set,
"Energy Conserving": energy_conserving,
"model_url": model_url,
"paper_url": paper_url,
"Notes": additional_info,
}
eval_entry.update(metrics)
if eval_type not in eval_results:
eval_results[eval_type] = Dataset.from_dict(
{k: [v] for k, v in eval_entry.items()}
)
else:
eval_results[eval_type] = eval_results[eval_type].add_item(eval_entry)
data_file_name = leaderboard_data.result_paths[eval_type]
# Upload results
yield "💾 Saving results to database..."
with tempfile.NamedTemporaryFile(suffix=".parquet") as tmp_file:
eval_results[eval_type].to_parquet(tmp_file.name)
api.upload_file(
repo_id=RESULTS_DATASET,
path_or_fileobj=tmp_file.name,
path_in_repo=f"data/{data_file_name}",
repo_type="dataset",
token=TOKEN,
)
# Save contact information
contact_info = {
"model": model,
"organization": organization,
"username": profile.username,
"email": mail,
"date": submission_time,
}
if contact_key not in leaderboard_data.contact_infos:
leaderboard_data.contact_infos[contact_key] = Dataset.from_dict(
{k: [v] for k, v in contact_info.items()}
)
else:
leaderboard_data.contact_infos[contact_key] = (
leaderboard_data.contact_infos[contact_key].add_item(contact_info)
)
leaderboard_data.contact_infos.push_to_hub(CONTACT_DATASET, token=TOKEN)
success_str = f"✅ Model {model} is successfully evaluated and stored in our database.\nPlease wait an hour and refresh the leaderboard to see your results displayed."
yield success_str
except Exception as e:
print(f"Error during submission: {e}")
yield (
f"An error occurred, please open a discussion/issue if you continue to have submission issues.\n{e}"
)
def transform_time(date_str):
dt = datetime.strptime(date_str, "%Y-%m-%d-%H:%M")
return dt.strftime("%Y-%m-%d")
def create_dataframe_tab(
tab_name: str,
df: pd.DataFrame,
datatype: List[str] = None,
widths: List[str] = None,
) -> gr.Tab:
"""
Create a tab with a dataframe.
"""
if datatype is None:
datatype = TYPES
if widths is None:
num_cols = len(df.columns)
fixed_cols = len(PRE_COLUMN_NAMES) + len(POST_COLUMN_NAMES)
# Model | Organization |Energy Conserving | Training Set | Metrics | date
widths = ["10%", "5%", "5%", "5%"] + ["5%"] * (num_cols - fixed_cols) + ["10%"]
if "Submission date" in df.columns:
df["Submission date"] = df["Submission date"].apply(transform_time)
cm = sns.color_palette("viridis_r", as_cmap=True)
df = df.style.format(precision=2).background_gradient(cmap=cm)
with gr.Tab(tab_name) as tab:
gr.Dataframe(
value=df,
datatype=datatype,
interactive=False,
show_search="filter",
column_widths=widths,
show_copy_button=True,
)
return tab
def create_s2ef_tabs(split: str, results_dfs: Dict[str, pd.DataFrame]) -> None:
"""
Create S2EF tabs for a given split (Validation/Test).
"""
subsplit_names = {
"all": "All",
"biomolecules": "Biomolecules",
"electrolytes": "Electrolytes",
"metal_complexes": "Metal Complexes",
"neutral_organics": "Neutral Organics",
}
for subsplit, display_name in subsplit_names.items():
df_key = f"{split}_{subsplit}"
create_dataframe_tab(display_name, results_dfs[df_key])
def create_evaluation_tabs(results_dfs: Dict[str, pd.DataFrame]) -> None:
"""
Create evaluation tabs for non-S2EF evaluations, including Overview tab.
"""
# Create Overview tab first
overview_df = create_overview_dataframe(results_dfs)
n_overview_columns = len(overview_df.columns)
create_dataframe_tab(
"Overview", overview_df, widths=["15%"] + ["10%"] * (n_overview_columns - 1)
)
# Create individual evaluation tabs
for eval_type in OTHER_EVAL_TYPES:
display_name = "IE/EA" if eval_type == "IE_EA" else eval_type
create_dataframe_tab(display_name, results_dfs[eval_type])
def create_overview_dataframe(results_dfs: Dict[str, pd.DataFrame]) -> pd.DataFrame:
"""
Create an overview dataframe combining all models with only the first metric from each eval type.
"""
model_info = {}
for eval_type, df in results_dfs.items():
if eval_type.startswith("Validation_") or eval_type.startswith("Test_"):
continue
for _, row in df.iterrows():
model_name = row["Model"]
dataset = row["Training Set"]
model_entry = (model_name, dataset)
model_info[model_entry] = {
"Model": model_name,
"Organization": row.get("Organization", ""),
"Energy Conserving": row.get("Energy\nConserving", ""),
"Training Set": dataset,
}
overview_data = {
"Model": [],
"Organization": [],
"Energy\nConserving": [],
"Training Set": [],
}
metric_columns = {}
for eval_type in OTHER_EVAL_TYPES:
if eval_type in results_dfs and eval_type in LEADERBOARD_COLUMNS:
metric_display_name = COLUMN_MAPPING[LEADERBOARD_COLUMNS[eval_type][0]]
task_display_name = "IE/EA" if eval_type == "IE_EA" else eval_type
full_display_name = f"{task_display_name}\n{metric_display_name}"
overview_data[full_display_name] = []
metric_columns[full_display_name] = (eval_type, metric_display_name)
all_model_entries = model_info.keys()
model_rankings = defaultdict(list)
for model_entry in sorted(all_model_entries, key=lambda x: (x[0], x[1])):
model_name, dataset = model_entry
entry_info = model_info[model_entry]
overview_data["Model"].append(entry_info["Model"])
overview_data["Organization"].append(entry_info["Organization"])
overview_data["Energy\nConserving"].append(entry_info["Energy Conserving"])
overview_data["Training Set"].append(entry_info["Training Set"])
# Fill in metrics for each column
for display_col, (eval_type, source_col) in metric_columns.items():
if eval_type in results_dfs:
df = results_dfs[eval_type].reset_index(drop=True)
# Match both model name and training set
model_row = df[
(df["Model"] == model_name) & (df["Training Set"] == dataset)
]
if not model_row.empty and source_col in model_row.columns:
value = model_row.iloc[0][source_col]
rank = model_row.index[0]
else:
value = np.nan
rank = df.shape[0]
overview_data[display_col].append(value)
model_rankings[model_entry].append(rank)
overview_df = pd.DataFrame(overview_data)
def get_rank(row):
model_name = row["Model"]
dataset = row["Training Set"]
rank = np.mean(model_rankings[(model_name, dataset)])
return rank
overview_df["overall_rank"] = overview_df.apply(get_rank, axis=1)
overview_df = overview_df.sort_values(by="overall_rank").drop(
columns=["overall_rank"]
)
return overview_df
def create_submission_interface() -> Tuple[gr.components.Component, ...]:
"""
Create the submission interface components.
"""
with gr.Accordion("Submit predictions for evaluation"):
with gr.Row():
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
energy_conserving = gr.Checkbox(
label="Is the model energy conserving? (i.e. F= -dE/dx)"
)
model_url = gr.Textbox(label="Model/Checkpoint URL")
paper_url = gr.Textbox(label="Paper URL")
dataset = gr.Dropdown(
choices=["OMol-102M", "OMol-4M", "UMA-459M", "Other"],
label="Training set",
interactive=True,
)
additional_info = gr.Textbox(
label="Additional info (cutoff radius, # of params, etc.)"
)
organization = gr.Textbox(label="Organization")
mail = gr.Textbox(
label="Contact email (will be stored privately, & used if there is an issue with your submission)"
)
with gr.Column():
file_output = gr.File()
with gr.Row():
eval_type = gr.Dropdown(
choices=ALL_EVAL_TYPES,
label="Eval Type",
interactive=True,
)
with gr.Column():
gr.LoginButton()
with gr.Column():
submit_button = gr.Button("Submit Eval")
submission_result = gr.Textbox(label="Status")
return (
submit_button,
file_output,
eval_type,
organization,
model_name_textbox,
model_url,
paper_url,
energy_conserving,
mail,
dataset,
additional_info,
submission_result,
)
def create_interface() -> gr.Blocks:
"""
Create the complete Gradio interface.
"""
# Load data
_, results_dfs = leaderboard_data.load_eval_data()
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# Citation section
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
gr.Markdown(CITATION_BUTTON_LABEL)
gr.Markdown(CITATION_BUTTON_TEXT)
# Evaluation results
gr.Markdown("## Evaluations", elem_classes="markdown-text")
with gr.Row():
create_evaluation_tabs(results_dfs)
gr.Markdown(
"**Overview rankings based on average rank across all evaluations",
elem_classes="markdown-text",
)
# S2EF Results tabs
gr.Markdown("## S2EF", elem_classes="markdown-text")
with gr.Tab("Test"):
create_s2ef_tabs("Test", results_dfs)
with gr.Tab("Validation"):
create_s2ef_tabs("Validation", results_dfs)
(
submit_button,
file_output,
eval_type,
organization,
model_name_textbox,
model_url,
paper_url,
energy_conserving,
mail,
dataset,
additional_info,
submission_result,
) = create_submission_interface()
submit_button.click(
add_new_eval,
[
file_output,
eval_type,
organization,
model_name_textbox,
model_url,
paper_url,
energy_conserving,
mail,
dataset,
additional_info,
],
submission_result,
)
return demo
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
def main():
demo = create_interface()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
# Launch the demo
demo.launch(debug=True)
if __name__ == "__main__":
main()
|