Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import time | |
from os import path | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
# TRANSFORMERS_CACHE is deprecated, only use HF_HOME | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
import gradio as gr | |
import torch | |
# Try to handle version compatibility issues | |
try: | |
from diffusers import FluxPipeline | |
except ImportError as e: | |
print(f"Error importing FluxPipeline: {e}") | |
print("Attempting to use StableDiffusionPipeline as fallback...") | |
from diffusers import StableDiffusionPipeline as FluxPipeline | |
torch.backends.cuda.matmul.allow_tf32 = True | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
# Custom CSS for gradient effects and visual enhancements | |
custom_css = """ | |
.container { | |
max-width: 1200px; | |
margin: 0 auto; | |
padding: 20px; | |
} | |
.gradio-container { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%); | |
min-height: 100vh; | |
} | |
.main-content { | |
background: rgba(255, 255, 255, 0.95); | |
border-radius: 20px; | |
padding: 30px; | |
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1); | |
backdrop-filter: blur(10px); | |
} | |
h1 { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
background-clip: text; | |
text-align: center; | |
font-size: 3rem !important; | |
font-weight: 800 !important; | |
margin-bottom: 1rem !important; | |
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1); | |
} | |
.subtitle { | |
text-align: center; | |
color: #666; | |
font-size: 1.2rem; | |
margin-bottom: 2rem; | |
} | |
.gr-button-primary { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
border: none !important; | |
color: white !important; | |
font-weight: bold !important; | |
font-size: 1.1rem !important; | |
padding: 12px 30px !important; | |
border-radius: 10px !important; | |
transition: all 0.3s ease !important; | |
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3) !important; | |
} | |
.gr-button-primary:hover { | |
transform: translateY(-2px) !important; | |
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important; | |
} | |
.gr-input, .gr-box { | |
border-radius: 10px !important; | |
border: 2px solid #e0e0e0 !important; | |
transition: all 0.3s ease !important; | |
} | |
.gr-input:focus { | |
border-color: #667eea !important; | |
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important; | |
} | |
.gr-form { | |
background: white !important; | |
border-radius: 15px !important; | |
padding: 20px !important; | |
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05) !important; | |
} | |
.gr-padded { | |
padding: 15px !important; | |
} | |
.badge-container { | |
display: flex; | |
justify-content: center; | |
gap: 12px; | |
margin: 20px 0; | |
} | |
.how-to-use { | |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
border-radius: 15px; | |
padding: 25px; | |
margin-top: 30px; | |
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05); | |
} | |
.how-to-use h2 { | |
color: #667eea; | |
font-size: 1.8rem; | |
margin-bottom: 1rem; | |
} | |
.how-to-use ol { | |
color: #555; | |
line-height: 1.8; | |
} | |
.how-to-use li { | |
margin-bottom: 10px; | |
} | |
.tip { | |
background: rgba(102, 126, 234, 0.1); | |
border-left: 4px solid #667eea; | |
padding: 15px; | |
margin-top: 20px; | |
border-radius: 5px; | |
color: #555; | |
font-style: italic; | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo: | |
with gr.Column(elem_classes="main-content"): | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 800px; margin: 0 auto;"> | |
<h1>FLUX Fast & Furious</h1> | |
<p class="subtitle">Lightning-fast image generation powered by Hyper-FLUX LoRA</p> | |
</div> | |
""" | |
) | |
gr.HTML( | |
""" | |
<div class='badge-container'> | |
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge"> | |
</a> | |
<a href="https://discord.gg/openfreeai" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge"> | |
</a> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Group(): | |
prompt = gr.Textbox( | |
label="β¨ Your Image Description", | |
placeholder="E.g., A serene landscape with mountains and a lake at sunset", | |
lines=3 | |
) | |
with gr.Accordion("π¨ Advanced Settings", open=False): | |
with gr.Group(): | |
with gr.Row(): | |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024) | |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024) | |
with gr.Row(): | |
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8) | |
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5) | |
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0) | |
generate_btn = gr.Button("π Generate Image", variant="primary", scale=1) | |
with gr.Column(scale=4): | |
output = gr.Image(label="π¨ Your Generated Image") | |
gr.HTML( | |
""" | |
<div class="how-to-use"> | |
<h2>π How to Use</h2> | |
<ol> | |
<li>βοΈ Enter a detailed description of the image you want to create</li> | |
<li>βοΈ Adjust advanced settings if desired (tap to expand)</li> | |
<li>π― Tap "Generate Image" and watch the magic happen!</li> | |
</ol> | |
<div class="tip"> | |
π‘ <strong>Pro Tip:</strong> Be specific in your description for best results! Include details about style, mood, colors, and composition. | |
</div> | |
</div> | |
""" | |
) | |
def process_image(height, width, steps, scales, prompt, seed): | |
global pipe | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
return pipe( | |
prompt=[prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scales), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
generate_btn.click( | |
process_image, | |
inputs=[height, width, steps, scales, prompt, seed], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch() |