flx8lora / app.py
fantos's picture
Update app.py
7fbb32f verified
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
# TRANSFORMERS_CACHE is deprecated, only use HF_HOME
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
import gradio as gr
import torch
# Try to handle version compatibility issues
try:
from diffusers import FluxPipeline
except ImportError as e:
print(f"Error importing FluxPipeline: {e}")
print("Attempting to use StableDiffusionPipeline as fallback...")
from diffusers import StableDiffusionPipeline as FluxPipeline
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
# Custom CSS for gradient effects and visual enhancements
custom_css = """
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%);
min-height: 100vh;
}
.main-content {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 30px;
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
backdrop-filter: blur(10px);
}
h1 {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-align: center;
font-size: 3rem !important;
font-weight: 800 !important;
margin-bottom: 1rem !important;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
}
.subtitle {
text-align: center;
color: #666;
font-size: 1.2rem;
margin-bottom: 2rem;
}
.gr-button-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-weight: bold !important;
font-size: 1.1rem !important;
padding: 12px 30px !important;
border-radius: 10px !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3) !important;
}
.gr-button-primary:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important;
}
.gr-input, .gr-box {
border-radius: 10px !important;
border: 2px solid #e0e0e0 !important;
transition: all 0.3s ease !important;
}
.gr-input:focus {
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
.gr-form {
background: white !important;
border-radius: 15px !important;
padding: 20px !important;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05) !important;
}
.gr-padded {
padding: 15px !important;
}
.badge-container {
display: flex;
justify-content: center;
gap: 12px;
margin: 20px 0;
}
.how-to-use {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 15px;
padding: 25px;
margin-top: 30px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05);
}
.how-to-use h2 {
color: #667eea;
font-size: 1.8rem;
margin-bottom: 1rem;
}
.how-to-use ol {
color: #555;
line-height: 1.8;
}
.how-to-use li {
margin-bottom: 10px;
}
.tip {
background: rgba(102, 126, 234, 0.1);
border-left: 4px solid #667eea;
padding: 15px;
margin-top: 20px;
border-radius: 5px;
color: #555;
font-style: italic;
}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
with gr.Column(elem_classes="main-content"):
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1>FLUX Fast & Furious</h1>
<p class="subtitle">Lightning-fast image generation powered by Hyper-FLUX LoRA</p>
</div>
"""
)
gr.HTML(
"""
<div class='badge-container'>
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
<img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
</a>
<a href="https://discord.gg/openfreeai" target="_blank">
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
</a>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
prompt = gr.Textbox(
label="✨ Your Image Description",
placeholder="E.g., A serene landscape with mountains and a lake at sunset",
lines=3
)
with gr.Accordion("🎨 Advanced Settings", open=False):
with gr.Group():
with gr.Row():
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
with gr.Row():
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
generate_btn = gr.Button("πŸš€ Generate Image", variant="primary", scale=1)
with gr.Column(scale=4):
output = gr.Image(label="🎨 Your Generated Image")
gr.HTML(
"""
<div class="how-to-use">
<h2>πŸ“– How to Use</h2>
<ol>
<li>✍️ Enter a detailed description of the image you want to create</li>
<li>βš™οΈ Adjust advanced settings if desired (tap to expand)</li>
<li>🎯 Tap "Generate Image" and watch the magic happen!</li>
</ol>
<div class="tip">
πŸ’‘ <strong>Pro Tip:</strong> Be specific in your description for best results! Include details about style, mood, colors, and composition.
</div>
</div>
"""
)
@spaces.GPU
def process_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
return pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
generate_btn.click(
process_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=output
)
if __name__ == "__main__":
demo.launch()