perspicacity / app.py
fdaudens's picture
fdaudens HF Staff
Update app.py
a330e89 verified
# app.py
import os
import logging
import asyncio
import nest_asyncio
from datetime import datetime
import uuid
import aiohttp
import gradio as gr
import requests
import xml.etree.ElementTree as ET
import json
from langfuse.llama_index import LlamaIndexInstrumentor
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.weather import OpenWeatherMapToolSpec
from llama_index.tools.playwright import PlaywrightToolSpec
from llama_index.core.tools import FunctionTool
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import RssReader, SimpleWebPageReader
from llama_index.core import SummaryIndex
# Import the event types for streaming
from llama_index.core.agent.workflow import AgentStream, ToolCall, ToolCallResult
import subprocess
subprocess.run(["playwright", "install"])
# allow nested loops in Spaces
nest_asyncio.apply()
# --- Llangfuse ---
instrumentor = LlamaIndexInstrumentor(
public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"),
secret_key=os.environ.get("LANGFUSE_SECRET_KEY"),
host=os.environ.get("LANGFUSE_HOST"),
)
instrumentor.start()
# --- Secrets via env vars ---
HF_TOKEN = os.getenv("HF_TOKEN")
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENWEATHERMAP_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- LLMs ---
llm = HuggingFaceInferenceAPI(
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
token=HF_TOKEN,
task="conversational",
streaming=True
)
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
today_str = datetime.now().strftime("%B %d, %Y")
ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex)
# # OpenAI for pure function-calling
# openai_llm = OpenAI(
# model="gpt-4o",
# api_key=OPENAI_API_KEY,
# temperature=0.0,
# streaming=False,
# )
# --- Tools Setup ---
# DuckDuckGo
# duck_spec = DuckDuckGoSearchToolSpec()
# search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)
# Weather
openweather_api_key=OPENWEATHERMAP_KEY
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool = FunctionTool.from_defaults(
weather_tool_spec.weather_at_location,
name="current_weather",
description="Get the current weather at a specific location (city, country)."
)
forecast_tool = FunctionTool.from_defaults(
weather_tool_spec.forecast_tommorrow_at_location,
name="weather_forecast",
description="Get tomorrow's weather forecast for a specific location (city, country)."
)
# Playwright (synchronous start)
# async def _start_browser():
# return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
# browser = asyncio.get_event_loop().run_until_complete(_start_browser())
# playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)
# navigate_tool = FunctionTool.from_defaults(
# playwright_tool_spec.navigate_to,
# name="web_navigate",
# description="Navigate to a specific URL."
# )
# extract_text_tool = FunctionTool.from_defaults(
# playwright_tool_spec.extract_text,
# name="web_extract_text",
# description="Extract all text from the current page."
# )
# extract_links_tool = FunctionTool.from_defaults(
# playwright_tool_spec.extract_hyperlinks,
# name="web_extract_links",
# description="Extract all hyperlinks from the current page."
# )
# Google News RSS
# def fetch_google_news_rss():
# docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
# return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]
# -----------------------------
# Google News RSS
# -----------------------------
def fetch_news_headlines() -> str:
"""Fetches the latest news from Google News RSS feed.
Returns:
A string containing the latest news articles from Google News, or an error message if the request fails.
"""
url = "https://news.google.com/rss"
try:
response = requests.get(url)
response.raise_for_status()
# Parse the XML content
root = ET.fromstring(response.content)
# Format the news articles into a readable string
formatted_news = []
for i, item in enumerate(root.findall('.//item')):
if i >= 5:
break
title = item.find('title').text if item.find('title') is not None else 'N/A'
link = item.find('link').text if item.find('link') is not None else 'N/A'
pub_date = item.find('pubDate').text if item.find('pubDate') is not None else 'N/A'
description = item.find('description').text if item.find('description') is not None else 'N/A'
formatted_news.append(f"Title: {title}")
formatted_news.append(f"Published: {pub_date}")
formatted_news.append(f"Link: {link}")
formatted_news.append(f"Description: {description}")
formatted_news.append("---")
return "\n".join(formatted_news) if formatted_news else "No news articles found."
except requests.exceptions.RequestException as e:
return f"Error fetching news: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
google_rss_tool = FunctionTool.from_defaults(
fn=fetch_news_headlines,
name="fetch_google_news_rss",
description="Fetch latest headlines."
)
# -----------------------------
# SERPER API
# -----------------------------
def fetch_news_topics(query: str) -> str:
"""Fetches news articles about a specific topic using the Serper API.
Args:
query: The topic to search for news about.
Returns:
A string containing the news articles found, or an error message if the request fails.
"""
url = "https://google.serper.dev/news"
payload = json.dumps({
"q": query
})
headers = {
'X-API-KEY': os.getenv('SERPER_API_KEY'),
'Content-Type': 'application/json'
}
try:
response = requests.post(url, headers=headers, data=payload)
response.raise_for_status()
news_data = response.json()
# Format the news articles into a readable string
formatted_news = []
for i, article in enumerate(news_data.get('news', [])):
if i >= 5:
break
formatted_news.append(f"Title: {article.get('title', 'N/A')}")
formatted_news.append(f"Source: {article.get('source', 'N/A')}")
formatted_news.append(f"Link: {article.get('link', 'N/A')}")
formatted_news.append(f"Snippet: {article.get('snippet', 'N/A')}")
formatted_news.append("---")
return "\n".join(formatted_news) if formatted_news else "No news articles found."
except requests.exceptions.RequestException as e:
return f"Error fetching news: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
serper_news_tool = FunctionTool.from_defaults(
fetch_news_topics,
name="fetch_news_from_serper",
description="Fetch news articles on a specific topic."
)
# -----------------------------
# WEB PAGE READER
# -----------------------------
def summarize_webpage(url: str) -> str:
"""Fetches and summarizes the content of a web page."""
try:
# NOTE: the html_to_text=True option requires html2text to be installed
documents = SimpleWebPageReader(html_to_text=True).load_data([url])
if not documents:
return "No content could be loaded from the provided URL."
index = SummaryIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("Summarize the main points of this page.")
return str(response)
except Exception as e:
return f"An error occurred while summarizing the web page: {str(e)}"
webpage_reader_tool = FunctionTool.from_defaults(
summarize_webpage,
name="summarize_webpage",
description="Read and summarize the main points of a web page given its URL."
)
# Create the agent workflow
tools = [
#search_tool,
#navigate_tool,
#extract_text_tool,
#extract_links_tool,
weather_tool,
forecast_tool,
google_rss_tool,
serper_news_tool,
webpage_reader_tool,
]
web_agent = AgentWorkflow.from_tools_or_functions(
tools,
llm=llm,
system_prompt="""You are a helpful assistant with access to specialized tools for retrieving information about weather, and news.
AVAILABLE TOOLS:
1. current_weather - Get current weather conditions for a location
2. weather_forecast - Get tomorrow's weather forecast for a location
3. fetch_google_news_rss - Fetch the latest general news headlines
4. fetch_news_from_serper - Fetch news articles on a specific topic
5. summarize_webpage - Read and summarize the content of a web page
WHEN AND HOW TO USE EACH TOOL:
For weather information:
- Use current_weather when asked about present conditions
EXAMPLE: User asks "What's the weather in Tokyo?"
TOOL: current_weather
PARAMETERS: {"location": "Tokyo, JP"}
- Use weather_forecast when asked about future weather
EXAMPLE: User asks "What will the weather be like in Paris tomorrow?"
TOOL: weather_forecast
PARAMETERS: {"location": "Paris, FR"}
For news retrieval:
- Use fetch_google_news_rss for general headlines (requires NO parameters)
EXAMPLE: User asks "What's happening in the news today?"
TOOL: fetch_google_news_rss
PARAMETERS: {}
- Use fetch_news_from_serper for specific news topics
EXAMPLE: User asks "Any news about AI advancements?"
TOOL: fetch_news_from_serper
PARAMETERS: {"query": "artificial intelligence advancements"}
For web content:
- Use summarize_webpage to extract information from websites
EXAMPLE: User asks "Can you summarize the content on hf.co/learn?"
TOOL: summarize_webpage
PARAMETERS: {"url": "https://hf.co/learn"}
IMPORTANT GUIDELINES:
- Always verify the format of parameters before submitting
- For locations, use the format "City, Country Code" (e.g., "Montreal, CA")
- For URLs, include the full address with http:// or https://
- When multiple tools are needed to answer a complex question, use them in sequence
- If possible, provide clickable links for your sources in your final answer.
When you use a tool, explain to the user that you're retrieving information. After receiving the tool's output, provide a helpful summary of the information.
"""
)
ctx = Context(web_agent)
# Async helper to run agent queries (kept for compatibility)
def run_query_sync(query: str):
"""Helper to run async agent.run in sync context."""
return asyncio.get_event_loop().run_until_complete(
web_agent.run(query, ctx=ctx)
)
# Updated run_query function to use stream_events
async def run_query(query: str):
trace_id = f"agent-run-{uuid.uuid4().hex}"
try:
with instrumentor.observe(
trace_id=trace_id,
session_id="web-agent-session",
user_id=ANON_USER_ID,
):
# Start the handler
handler = web_agent.run(query, ctx=ctx)
# Keep track of what we're showing to avoid duplicates
tool_calls_shown = set()
# Stream content
async for event in handler.stream_events():
if isinstance(event, AgentStream):
# Filter out any lines starting with "Thought:" or "Action:"
if hasattr(event, 'delta') and event.delta:
delta = event.delta
# Filter out thought processes and internal reasoning
if not (delta.strip().startswith("Thought:") or
delta.strip().startswith("Action:") or
delta.strip().startswith("Answer:")):
yield delta
elif isinstance(event, ToolCall):
tool_name = getattr(event, 'name', getattr(event, 'function_name', getattr(event, 'tool_name', "unknown tool")))
# Only show tool call message once per tool+call combo
tool_call_id = f"{tool_name}_{hash(str(getattr(event, 'args', '')))}"
if tool_call_id not in tool_calls_shown:
tool_calls_shown.add(tool_call_id)
yield f"\n\n🔧 Using tool: {tool_name}...\n"
elif isinstance(event, ToolCallResult):
# We don't need to show the raw tool result to the user
# The agent will incorporate the results in its response
pass
except Exception as e:
yield f"\n\n❌ Error: {str(e)}\n"
import traceback
yield f"Traceback: {traceback.format_exc()}"
finally:
instrumentor.flush()
# Updated gradio_query function
async def gradio_query(user_input, chat_history=None):
history = chat_history or []
history.append({"role": "user", "content": user_input})
# Add initial assistant message
history.append({"role": "assistant", "content": "Processing..."})
yield history, history
# Get streaming response
full_response = ""
async for chunk in run_query(user_input):
if chunk:
full_response += chunk
history[-1]["content"] = full_response
yield history, history
# Build and launch Gradio app
grb = gr.Blocks()
with grb:
gr.Markdown("## Perspicacity")
gr.Markdown(
"""
This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI tools working behind the scenes.\n\n
🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) — it's just a demo to show what agents can do.\n
🙌 Got ideas or improvements? PRs welcome!\n\n
👉 Try asking 'What's the weather in Montreal?' or 'What's in the news today?'
"""
)
chatbot = gr.Chatbot(type="messages")
txt = gr.Textbox(placeholder="Ask me anything...", show_label=False)
# Set up event handlers for streaming
txt.submit(
gradio_query,
inputs=[txt, chatbot],
outputs=[chatbot, chatbot]
).then(
lambda: gr.update(value=""), # Clear the textbox after submission
None,
[txt]
)
# Also update the button click handler
send_btn = gr.Button("Send")
send_btn.click(
gradio_query,
[txt, chatbot],
[chatbot, chatbot]
).then(
lambda: gr.update(value=""), # Clear the textbox after submission
None,
[txt]
)
if __name__ == "__main__":
grb.launch()