scout-claims / src /app.py
RobertoBarrosoLuque
get rid of share buttin
e6a379f
from pathlib import Path
import gradio as gr
import threading
import queue
import numpy as np
import base64
import tempfile
import os
from dotenv import load_dotenv
from modules.image_analysis import pil_to_base64_dict, analyze_damage_image
from modules.transcription import FireworksTranscription
from modules.incident_processing import process_transcript_description
from modules.claim_processing import generate_claim_report_pdf
load_dotenv()
_FILE_PATH = Path(__file__).parents[1]
class ClaimsAssistantApp:
def __init__(self):
self.damage_analysis = None
self.incident_data = None
self.live_transcription = ""
self.transcription_lock = threading.Lock()
self.is_recording = False
self.transcription_service = None
self.audio_queue = queue.Queue()
self.final_report_pdf = None
self.claim_reference = ""
self.pdf_temp_path = None
@staticmethod
def format_function_calls_display(incident_data):
"""Format function calls and external data for display"""
if not incident_data or "function_calls_made" not in incident_data:
return "", False
function_calls = incident_data.get("function_calls_made", [])
external_data = incident_data.get("external_data_retrieved", {})
if not function_calls:
return "", False
display_html = """
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white; padding: 20px; border-radius: 12px; margin: 15px 0;">
<h3 style="margin-top: 0; display: flex; align-items: center;">
<span style="margin-right: 10px;">πŸ”§</span>
AI Function Calls Executed
</h3>
<p style="margin-bottom: 15px; opacity: 0.9;">
The AI automatically gathered additional context by calling external functions:
</p>
"""
for i, call in enumerate(function_calls, 1):
status_icon = "βœ…" if call["status"] == "success" else "❌"
function_name = call["function_name"]
display_html += f"""
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 8px; margin: 10px 0;">
<h4 style="margin: 0 0 10px 0;">
{status_icon} {i}. {function_name.replace('_', ' ').title()}
</h4>
<p style="margin: 5px 0; opacity: 0.8; font-size: 14px;">
Status: {call['status'].title()} - {call['message']}
</p>
"""
if call["status"] == "success" and function_name in external_data:
result = external_data[function_name]
if function_name == "weather_lookup":
display_html += f"""
<div style="margin: 10px 0; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 5px;">
<strong>Weather Conditions:</strong><br/>
🌑️ Temperature: {result.get('temperature', 'N/A')}<br/>
☁️ Conditions: {result.get('conditions', 'N/A')}<br/>
πŸ‘οΈ Visibility: {result.get('visibility', 'N/A')}<br/>
🌧️ Precipitation: {result.get('precipitation', 'N/A')}
</div>
"""
elif function_name == "driver_record_check":
display_html += f"""
<div style="margin: 10px 0; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 5px;">
<strong>Driver Record:</strong><br/>
πŸ†” License: {result.get('license_status', 'N/A')}<br/>
πŸ›‘οΈ Insurance: {result.get('insurance_status', 'N/A')}<br/>
πŸ“Š Risk Level: {result.get('risk_assessment', 'N/A')}<br/>
πŸ“ Previous Claims: {result.get('previous_claims', 0)}
</div>
"""
display_html += "</div>"
display_html += """
<div style="margin-top: 15px; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 5px;">
<small style="opacity: 0.8;">
πŸ’‘ This additional context helps provide more accurate claim assessment and risk evaluation.
</small>
</div>
</div>
"""
return display_html, True
def create_interface(self):
"""Create the main Gradio interface"""
with gr.Blocks(title="Scout Claims", theme=gr.themes.Soft()) as demo:
# Header
with gr.Row():
with gr.Column():
gr.Markdown("# πŸš— Scout | AI Claims Assistant πŸš—")
gr.Markdown(
"*Automated Insurance Claims Processing with AI Function Calling*"
)
# Sidebar (API Key)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Powered by:")
gr.Image(
value=str(_FILE_PATH / "assets/fireworks_logo.png"),
height=30,
width=100,
show_label=False,
show_download_button=False,
container=False,
show_fullscreen_button=False,
show_share_button=False,
)
gr.Markdown("## βš™οΈ Configuration")
val = os.getenv("FIREWORKS_API_KEY", "")
api_key = gr.Textbox(
label="Fireworks AI API Key",
type="password",
placeholder="Enter your Fireworks AI API key",
value=val,
info="Required for AI processing",
)
gr.Markdown("## πŸ“‹ Instructions")
gr.Markdown(
"""
**Step 1:** Upload car damage photo(s) \n
**Step 2:** Use microphone to describe incident \n
**Step 3:** Generate and review claim report \n
"""
)
# Main Content Area
with gr.Column(scale=3):
# Step 1: Upload Image
gr.Markdown("## πŸ“· Step 1: Upload Damage Photos πŸ“·")
with gr.Row():
image_input = gr.Image(
label="Car Damage Photo", type="pil", height=300
)
with gr.Column():
analyze_btn = gr.Button(
"πŸ” Analyze Damage", variant="primary"
)
damage_status = gr.Textbox(
label="Analysis Status",
value="Ready to analyze damage",
interactive=False,
lines=2,
)
# Damage Analysis Results
damage_results = gr.JSON(
label="Damage Analysis Results", visible=False
)
gr.Markdown("---")
# Step 2: Incident Description with Live Streaming
gr.Markdown("## 🎀 Step 2: Describe the Incident 🎀")
with gr.Accordion(
"πŸ’‘ What to Include in Your Recording", open=True
):
gr.Markdown(
"""
**Please describe the following when you record:**
πŸ“… **When & Where:**
- Date and time of the accident
- Street address or intersection
πŸ‘₯ **Who Was Involved:**
- Other driver's name and contact info
- Vehicle details (make, model, color, license plate)
- Any witnesses
πŸš— **What Happened:**
- How the accident occurred
- Who was at fault and why
- Weather and road conditions
πŸ₯ **Injuries & Damage:**
- Anyone hurt? How seriously?
- How severe is the vehicle damage?
"""
)
with gr.Row():
# Direct audio input - no toggle button needed
with gr.Column():
audio_input = gr.Audio(
label="🎡 Record Incident Description",
sources=["microphone"],
streaming=True,
format="wav",
show_download_button=False,
)
transcription_display = gr.Textbox(
label="Live Transcription",
placeholder="Click the 'Record' button above to start recording...",
lines=8,
interactive=False,
autoscroll=True,
)
process_incident_btn = gr.Button(
"πŸ“ Process Incident", variant="primary"
)
incident_status = gr.Textbox(
label="Processing Status",
value="Record audio first to process incident",
interactive=False,
lines=2,
)
# NEW: Function calls display
function_calls_display = gr.HTML(
label="AI Function Calls", visible=False
)
# Incident Processing Results
incident_results = gr.JSON(
label="Incident Processing Results", visible=False
)
gr.Markdown("---")
# Step 3: Generate Claim Report
gr.Markdown("## πŸ“„ Step 3: Generate Claim Report πŸ“„")
generate_report_btn = gr.Button(
"πŸš€ Generate Claim Report", variant="primary", size="lg"
)
report_status = gr.Textbox(
label="Report Generation Status",
value="Complete steps 1 and 2 to generate report",
interactive=False,
lines=2,
)
# Final Report Display - Updated for PDF
with gr.Accordion(
"πŸ“‹ Generated Claim Report (PDF)", open=False
) as report_accordion:
# PDF Viewer using HTML iframe
pdf_viewer = gr.HTML(
value="<p style='text-align: center; color: gray;'>PDF report will appear here after generation</p>",
label="Claim Report PDF",
)
with gr.Row():
download_btn = gr.DownloadButton(
"πŸ’Ύ Download PDF Report", visible=False
)
submit_btn = gr.Button(
"βœ… Submit Claim", variant="stop", visible=False
)
# Event Handlers
def handle_damage_analysis(image, api_key):
if image is None:
return (
"❌ Please upload an image first",
gr.update(visible=False),
)
if not api_key.strip():
return (
"❌ Please enter your Fireworks AI API key first",
gr.update(visible=False),
)
try:
# Update status to show processing
yield (
"πŸ”„ Analyzing damage... Please wait",
gr.update(visible=False),
)
image_dict = pil_to_base64_dict(image)
self.damage_analysis = analyze_damage_image(
image=image_dict, api_key=api_key
)
yield (
"βœ… Damage analysis completed successfully!",
gr.update(value=self.damage_analysis, visible=True),
)
return None
except Exception as e:
yield (
f"❌ Error analyzing damage: {str(e)}",
gr.update(visible=False),
)
return None
def live_transcription_callback(text):
"""Callback for live transcription updates"""
with self.transcription_lock:
self.live_transcription = text
def initialize_transcription_service(api_key):
"""Initialize transcription service when audio starts"""
if not api_key.strip():
return False
if not self.transcription_service:
self.transcription_service = FireworksTranscription(api_key)
self.transcription_service.set_callback(live_transcription_callback)
if not self.is_recording:
self.is_recording = True
self.live_transcription = ""
return self.transcription_service._connect()
return True
def process_audio_stream(audio_tuple, api_key):
"""Process incoming audio stream for live transcription"""
if not audio_tuple:
with self.transcription_lock:
return self.live_transcription
# Initialize transcription service if needed
if not self.is_recording:
if not initialize_transcription_service(api_key):
return "❌ Failed to initialize transcription service. Check your API key."
try:
sample_rate, audio_data = audio_tuple
# Convert audio data to proper format
if not isinstance(audio_data, np.ndarray):
audio_data = np.array(audio_data, dtype=np.float32)
if audio_data.dtype != np.float32:
if audio_data.dtype == np.int16:
audio_data = audio_data.astype(np.float32) / 32768.0
elif audio_data.dtype == np.int32:
audio_data = audio_data.astype(np.float32) / 2147483648.0
else:
audio_data = audio_data.astype(np.float32)
# Skip if audio is too quiet
if np.max(np.abs(audio_data)) < 0.01:
with self.transcription_lock:
return self.live_transcription
# Convert to mono if stereo
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
# Resample to 16kHz if needed
if sample_rate != 16000:
ratio = 16000 / sample_rate
new_length = int(len(audio_data) * ratio)
if new_length > 0:
audio_data = np.interp(
np.linspace(0, len(audio_data) - 1, new_length),
np.arange(len(audio_data)),
audio_data,
)
# Convert to bytes and send to transcription service
audio_bytes = (audio_data * 32767).astype(np.int16).tobytes()
if (
self.transcription_service
and self.transcription_service.is_connected
):
self.transcription_service._send_audio_chunk(audio_bytes)
except Exception as e:
print(f"Error processing audio stream: {e}")
# Return current transcription
with self.transcription_lock:
return self.live_transcription
def handle_incident_processing(api_key):
"""Process the recorded transcription into structured incident data with function calling"""
if not self.live_transcription.strip():
return (
"❌ No transcription available. Please record audio first.",
gr.update(visible=False),
gr.update(visible=False),
)
if not api_key.strip():
return (
"❌ Please enter your Fireworks AI API key first",
gr.update(visible=False),
gr.update(visible=False),
)
try:
# Update status
yield (
"πŸ”„ Processing incident data ... Please wait",
gr.update(visible=False),
gr.update(visible=False),
)
# Use enhanced Fireworks processing with function calling
incident_analysis = process_transcript_description(
transcript=self.live_transcription, api_key=api_key
)
# Convert Pydantic model to dict for JSON display
self.incident_data = incident_analysis.model_dump()
# Format function calls for display
function_calls_html, show_calls = (
self.format_function_calls_display(self.incident_data)
)
# Update status message based on function calls
if show_calls:
status_message = f"βœ… Incident processing completed with {len(self.incident_data.get('function_calls_made', []))} AI function calls!"
else:
status_message = (
"βœ… Incident processing completed successfully!"
)
yield (
status_message,
gr.update(value=function_calls_html, visible=show_calls),
gr.update(value=self.incident_data, visible=True),
)
return None
except Exception as e:
yield (
f"❌ Error processing incident: {str(e)}",
gr.update(visible=False),
gr.update(visible=False),
)
return None
def handle_report_generation(api_key):
"""Generate comprehensive claim report as PDF using AI"""
if not self.damage_analysis or not self.incident_data:
return (
"❌ Please complete damage analysis and incident processing first",
"<p style='text-align: center; color: gray;'>PDF report will appear here after generation</p>",
gr.update(visible=False),
gr.update(visible=False),
gr.update(open=False),
)
if not api_key.strip():
return (
"❌ Please enter your Fireworks AI API key first",
"<p style='text-align: center; color: gray;'>PDF report will appear here after generation</p>",
gr.update(visible=False),
gr.update(visible=False),
gr.update(open=False),
)
try:
# Show processing status
yield (
"πŸ”„ Generating comprehensive PDF claim report... Please wait",
"<p style='text-align: center; color: gray;'>PDF report will appear here after generation</p>",
gr.update(visible=False),
gr.update(visible=False),
gr.update(open=False),
)
# Generate the PDF report
self.final_report_pdf = generate_claim_report_pdf(
damage_analysis=self.damage_analysis,
incident_data=self.incident_data,
)
# Extract claim reference for download filename
from datetime import datetime
timestamp = datetime.now()
self.claim_reference = f"CLM-{timestamp.strftime('%Y%m%d')}-{timestamp.strftime('%H%M%S')}"
# Save PDF to temporary file for viewing and downloading
if self.pdf_temp_path and os.path.exists(self.pdf_temp_path):
os.remove(self.pdf_temp_path)
temp_dir = tempfile.gettempdir()
self.pdf_temp_path = os.path.join(
temp_dir, f"{self.claim_reference}.pdf"
)
with open(self.pdf_temp_path, "wb") as f:
f.write(self.final_report_pdf)
# Create PDF viewer HTML
pdf_base64 = base64.b64encode(self.final_report_pdf).decode("utf-8")
pdf_viewer_html = f"""
<div style="text-align: center; margin: 20px 0;">
<h3 style="color: #2563eb;">πŸ“‹ Insurance Claim Report - {self.claim_reference}</h3>
<iframe
src="data:application/pdf;base64,{pdf_base64}"
width="100%"
height="800px"
style="border: 2px solid #e5e7eb; border-radius: 8px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);">
<p>Your browser does not support PDF viewing.
<a href="data:application/pdf;base64,{pdf_base64}" download="{self.claim_reference}.pdf">
Click here to download the PDF
</a></p>
</iframe>
<p style="margin-top: 15px; color: #6b7280; font-size: 14px;">
πŸ“„ Professional PDF report generated successfully! Use the download button below to save.
</p>
</div>
"""
yield (
"βœ… Professional PDF claim report generated successfully!",
pdf_viewer_html,
gr.update(visible=True, value=self.pdf_temp_path),
gr.update(visible=True),
gr.update(open=True),
)
return None
except Exception as e:
yield (
f"❌ Error generating PDF report: {str(e)}",
"<p style='text-align: center; color: red;'>Error generating PDF report</p>",
gr.update(visible=False),
gr.update(visible=False),
gr.update(open=False),
)
return None
def handle_claim_submission():
"""Handle final claim submission"""
if not self.final_report_pdf:
return "❌ No report available to submit"
return f"πŸŽ‰ Claim submitted successfully! Reference: {self.claim_reference}"
def cleanup_temp_files():
"""Clean up temporary PDF files"""
if self.pdf_temp_path and os.path.exists(self.pdf_temp_path):
try:
os.remove(self.pdf_temp_path)
except Exception as e:
print(f"Error deleting temporary PDF file: {e}")
pass
# Wire up the events
analyze_btn.click(
fn=handle_damage_analysis,
inputs=[image_input, api_key],
outputs=[damage_status, damage_results],
)
# Handle streaming audio for live transcription
audio_input.stream(
fn=process_audio_stream,
inputs=[audio_input, api_key],
outputs=[transcription_display],
show_progress="hidden",
)
# Updated to include function calls display
process_incident_btn.click(
fn=handle_incident_processing,
inputs=[api_key],
outputs=[incident_status, function_calls_display, incident_results],
)
generate_report_btn.click(
fn=handle_report_generation,
inputs=[api_key],
outputs=[
report_status,
pdf_viewer,
download_btn,
submit_btn,
report_accordion,
],
)
submit_btn.click(fn=handle_claim_submission, outputs=[report_status])
# Clean up on app close
demo.load(lambda: None)
return demo
def create_claims_app():
"""Factory function to create the claims assistant app"""
app = ClaimsAssistantApp()
return app.create_interface()
# Create and launch the demo
if __name__ == "__main__":
print("Starting AI Claims Assistant Demo with Function Calling")
demo = create_claims_app()
demo.launch(share=True)