assistant / legal.py
fizzarif7's picture
Update legal.py
1285a73 verified
from flask import Flask, request, jsonify, send_from_directory
import speech_recognition as sr
import datetime
import pyttsx3
from langdetect import detect
from huggingface_hub import login
from sentence_transformers import SentenceTransformer
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM
import faiss
import numpy as np
import pandas as pd
import json
import webbrowser
from pydub import AudioSegment
import os
from werkzeug.utils import secure_filename
import tempfile
from dotenv import load_dotenv # Ensure dotenv is imported for .env loading
app = Flask(__name__, static_folder='.') # Serve static files from the current directory
# Load Hugging Face API key from environment variable
load_dotenv() # Load environment variables from .env file
hf_token = os.environ.get("API_KEY")
if not hf_token:
raise ValueError("Hugging Face API key not found. Please set 'API_KEY' as an environment variable or in a .env file.")
login(token=hf_token)
# QA Models
qa_model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
qa_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
qa_pipeline = pipeline("question-answering", model=qa_model, tokenizer=qa_tokenizer)
# Summarization Model
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
summarizer_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
summarizer_pipeline = pipeline("summarization", model=summarizer_model, tokenizer=summarizer_tokenizer)
embed_model = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2")
# Load both datasets
try:
df_parquet = pd.read_parquet("ibtehaj dataset.parquet")
corpus_parquet = df_parquet["text"].dropna().tolist()
except FileNotFoundError:
raise FileNotFoundError("ibtehaj dataset.parquet not found. Make sure it's in the same directory as app.py")
try:
with open("pdf_data.json", "r", encoding="utf-8") as f:
json_data = json.load(f)
except FileNotFoundError:
raise FileNotFoundError("pdf_data.json not found. Make sure it's in the same directory as app.py")
except json.JSONDecodeError as e:
raise ValueError(f"Error decoding pdf_data.json: {e}")
# Extract text from JSON
corpus_json = []
for entry in json_data:
if isinstance(entry, dict) and "text" in entry:
text = entry["text"].strip()
if text:
corpus_json.append(text)
# Combine both corpora
corpus = corpus_parquet + corpus_json
# Compute embeddings
# This can take a while. Consider pre-computing and saving the index if corpus is large.
embeddings = embed_model.encode(corpus, show_progress_bar=True, batch_size=16)
# Build FAISS index
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(np.array(embeddings))
def rag_answer(question: str, k: int = 3) -> str:
q_emb = embed_model.encode([question])
D, I = index.search(q_emb, k)
context = "\n\n".join(corpus[i] for i in I[0] if 0 <= i < len(corpus))
if not context.strip():
return "Context is empty. Try rephrasing the question."
try:
result = qa_pipeline(question=question, context=context)
raw_answer = result.get("answer", "No answer found.")
# Summarize if answer is too long (>40 words or 300 characters)
if len(raw_answer.split()) > 40 or len(raw_answer) > 300:
summary = summarizer_pipeline(raw_answer, max_length=50, min_length=15, do_sample=False)
summarized_answer = summary[0]['summary_text']
else:
summarized_answer = raw_answer
return f"Answer: {summarized_answer}\n\n[Context Used]:\n{context[:500]}..."
except Exception as e:
return f"Error: {e}"
# Global for TTS engine (to allow stopping)
tts_engine = None
def init_tts_engine():
global tts_engine
if tts_engine is None:
tts_engine = pyttsx3.init()
tts_engine.setProperty('rate', 150)
tts_engine.setProperty('volume', 1.0)
voices = tts_engine.getProperty('voices')
for v in voices:
if "zira" in v.name.lower() or "female" in v.name.lower():
tts_engine.setProperty('voice', v.id)
break
init_tts_engine() # Initialize TTS engine once on startup
# Global variables for managing state (simplify for web context)
conversation_history = []
last_question_text = ""
last_answer_text = ""
@app.route('/')
def serve_index():
return send_from_directory('.', 'index.html')
@app.route('/<path:path>')
def serve_static_files(path):
# This route serves static files like CSS, JS, and images
# It must be specific to paths that exist as files, otherwise it might catch API calls
# For now, it's fine, but in complex apps, static files are often served by Nginx/Apache.
return send_from_directory('.', path)
@app.route('/answer', methods=['POST'])
def generate_answer_endpoint():
global last_question_text, last_answer_text, conversation_history
data = request.get_json()
question = data.get('question', '').strip()
if not question:
return jsonify({"answer": "Please provide a question."}), 400
last_question_text = question
timestamp = datetime.datetime.now().strftime("%H:%M:%S")
conversation_history.append({"role": "user", "time": timestamp, "text": question})
ans = rag_answer(question)
last_answer_text = ans
conversation_history.append({"role": "bot", "time": timestamp, "text": ans})
return jsonify({"answer": ans})
@app.route('/read-aloud', methods=['POST'])
def read_aloud_endpoint():
# This endpoint is generally not needed if client-side SpeechSynthesis API is used.
# Keeping it for completeness if server-side TTS is desired.
data = request.get_json()
text_to_read = data.get('text', '').strip()
if not text_to_read:
return jsonify({"status": "No text provided to read."}), 400
try:
# Create a temporary file for the speech audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
temp_audio_path = fp.name
tts_engine.save_to_file(text_to_read, temp_audio_path)
tts_engine.runAndWait()
# You would typically serve this file or stream it for client playback.
# For this setup, we'll confirm generation. The frontend handles playback.
return jsonify({"status": "TTS audio generated (server-side)."})
except Exception as e:
return jsonify({"status": f"Error during TTS: {str(e)}"}), 500
finally:
if 'temp_audio_path' in locals() and os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
@app.route('/upload-mp3', methods=['POST'])
def upload_mp3_endpoint():
global last_question_text, last_answer_text, conversation_history
if 'file' not in request.files:
return jsonify({"message": "No file part"}), 400
file = request.files['file']
if file.filename == '':
return jsonify({"message": "No selected file"}), 400
if file:
filename = secure_filename(file.filename)
# Create a temporary directory to save the uploaded file and its WAV conversion
# Ensure that the temp directory is managed for cleanup.
try:
with tempfile.TemporaryDirectory() as tmpdir:
mp3_path = os.path.join(tmpdir, filename)
file.save(mp3_path)
wav_path = os.path.join(tmpdir, filename.replace(".mp3", ".wav"))
try:
sound = AudioSegment.from_mp3(mp3_path)
sound.export(wav_path, format="wav")
except Exception as e:
# Catch pydub/ffmpeg related errors
return jsonify({"message": f"Error converting MP3 to WAV. Ensure FFmpeg is installed and in your system's PATH. Details: {e}"}), 500
try:
recognizer = sr.Recognizer()
with sr.AudioFile(wav_path) as src:
audio = recognizer.record(src)
text = recognizer.recognize_google(audio)
except sr.UnknownValueError:
return jsonify({"message": "Speech not understood. Please try again."}), 400
except sr.RequestError as e:
return jsonify({"message": f"Could not request results from speech recognition service; {e}"}), 500
except Exception as e: # Catch any other unexpected SR errors
return jsonify({"message": f"An unexpected error occurred during speech recognition: {e}"}), 500
# For web, you don't typically "save that file in .txt format and asks the user where to store that" server-side.
# The transcription is returned to the client. The client can then decide to save it.
return jsonify({
"message": "MP3 transcribed successfully.",
"transcription": text
})
except Exception as e:
# Catch any errors related to temporary directory creation or file saving
return jsonify({"message": f"An error occurred during file upload or temporary processing: {e}"}), 500
# This point should not be reached if 'if file' condition is handled.
return jsonify({"message": "An unknown file processing error occurred."}), 500
@app.route('/summarize', methods=['POST'])
def summarize_endpoint():
data = request.get_json()
text_to_summarize = data.get('text', '').strip()
if not text_to_summarize:
return jsonify({"summary": "No text provided for summarization."}), 400
def chunk_text(text, max_chunk_size=4000):
sentences = text.split(". ")
chunks = []
current_chunk = ""
for sentence in sentences:
# Add sentence length + 2 for ". "
if len(current_chunk) + len(sentence) + 2 < max_chunk_size:
current_chunk += sentence + ". "
else:
chunks.append(current_chunk.strip())
current_chunk = sentence + ". "
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
try:
chunks = chunk_text(text_to_summarize)
summaries = [
summarizer_pipeline(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
for chunk in chunks
]
final_input = " ".join(summaries)
final_summary = summarizer_pipeline(final_input, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
return jsonify({"summary": final_summary})
except Exception as e:
return jsonify({"summary": f"Error during summarization: {e}"}), 500
@app.route('/history', methods=['GET'])
def get_history():
return jsonify({"history": conversation_history})
if __name__ == '__main__':
# Make sure your datasets are in the same directory as app.py
# ibtehaj dataset.parquet
# pdf_data.json
# man.jpg (for the image)
app.run(debug=True) # debug=True allows for automatic reloading on code changes