train-modle / src /database_manager.py
fokan's picture
Force Space rebuild v2.1.0 with incremental training
cca1fa9
"""
Database Management System for Knowledge Distillation Platform
نظام إدارة قواعد البيانات لمنصة تقطير المعرفة
"""
import json
import logging
import os
from pathlib import Path
from typing import Dict, List, Any, Optional
from datetime import datetime
import asyncio
from datasets import load_dataset, Dataset
from huggingface_hub import list_datasets
logger = logging.getLogger(__name__)
class DatabaseManager:
"""
Comprehensive database management system for the platform
نظام إدارة قواعد البيانات الشامل للمنصة
"""
def __init__(self, storage_path: str = "data/databases"):
self.storage_path = Path(storage_path)
self.storage_path.mkdir(parents=True, exist_ok=True)
self.config_file = self.storage_path / "databases_config.json"
self.selected_databases_file = self.storage_path / "selected_databases.json"
# Load existing configuration
self.databases_config = self._load_config()
self.selected_databases = self._load_selected_databases()
logger.info(f"Database Manager initialized with {len(self.databases_config)} configured databases")
def _load_config(self) -> Dict[str, Any]:
"""Load databases configuration"""
try:
if self.config_file.exists():
with open(self.config_file, 'r', encoding='utf-8') as f:
return json.load(f)
else:
# Initialize with default medical datasets
default_config = self._get_default_medical_datasets()
self._save_config(default_config)
return default_config
except Exception as e:
logger.error(f"Error loading databases config: {e}")
return {}
def _save_config(self, config: Dict[str, Any]):
"""Save databases configuration"""
try:
with open(self.config_file, 'w', encoding='utf-8') as f:
json.dump(config, f, indent=2, ensure_ascii=False)
except Exception as e:
logger.error(f"Error saving databases config: {e}")
def _load_selected_databases(self) -> List[str]:
"""Load selected databases list"""
try:
if self.selected_databases_file.exists():
with open(self.selected_databases_file, 'r', encoding='utf-8') as f:
return json.load(f)
else:
return []
except Exception as e:
logger.error(f"Error loading selected databases: {e}")
return []
def _save_selected_databases(self):
"""Save selected databases list"""
try:
with open(self.selected_databases_file, 'w', encoding='utf-8') as f:
json.dump(self.selected_databases, f, indent=2, ensure_ascii=False)
except Exception as e:
logger.error(f"Error saving selected databases: {e}")
def _get_default_medical_datasets(self) -> Dict[str, Any]:
"""Get default medical datasets configuration"""
return {
"medical_meadow_medical_flashcards": {
"name": "Medical Meadow Medical Flashcards",
"name_ar": "بطاقات تعليمية طبية",
"dataset_id": "medalpaca/medical_meadow_medical_flashcards",
"category": "medical",
"description": "Medical flashcards for educational purposes",
"description_ar": "بطاقات تعليمية طبية لأغراض التعليم",
"size": "~50MB",
"language": "English",
"modality": "text",
"license": "Apache 2.0",
"added_date": datetime.now().isoformat(),
"status": "available"
},
"pubmed_qa": {
"name": "PubMed QA",
"name_ar": "أسئلة وأجوبة PubMed",
"dataset_id": "pubmed_qa",
"category": "medical",
"description": "Question answering dataset based on PubMed abstracts",
"description_ar": "مجموعة بيانات أسئلة وأجوبة مبنية على ملخصات PubMed",
"size": "~100MB",
"language": "English",
"modality": "text",
"license": "MIT",
"added_date": datetime.now().isoformat(),
"status": "available"
},
"medical_dialog": {
"name": "Medical Dialog",
"name_ar": "حوارات طبية",
"dataset_id": "medical_dialog",
"category": "medical",
"description": "Medical conversation dataset",
"description_ar": "مجموعة بيانات المحادثات الطبية",
"size": "~200MB",
"language": "English/Chinese",
"modality": "text",
"license": "CC BY 4.0",
"added_date": datetime.now().isoformat(),
"status": "available"
}
}
async def search_huggingface_datasets(self, query: str, limit: int = 20) -> List[Dict[str, Any]]:
"""Search for datasets on Hugging Face"""
try:
logger.info(f"Searching Hugging Face for datasets: {query}")
# Search datasets
datasets = list_datasets(search=query, limit=limit)
results = []
for dataset in datasets:
try:
dataset_info = {
"id": dataset.id,
"name": dataset.id.split('/')[-1],
"author": dataset.author if hasattr(dataset, 'author') else dataset.id.split('/')[0],
"description": getattr(dataset, 'description', 'No description available'),
"tags": getattr(dataset, 'tags', []),
"downloads": getattr(dataset, 'downloads', 0),
"likes": getattr(dataset, 'likes', 0),
"created_at": getattr(dataset, 'created_at', None),
"last_modified": getattr(dataset, 'last_modified', None)
}
results.append(dataset_info)
except Exception as e:
logger.warning(f"Error processing dataset {dataset.id}: {e}")
continue
logger.info(f"Found {len(results)} datasets")
return results
except Exception as e:
logger.error(f"Error searching Hugging Face datasets: {e}")
return []
async def add_database(self, database_info: Dict[str, Any]) -> bool:
"""Add a new database to the configuration"""
try:
database_id = database_info.get('dataset_id') or database_info.get('id')
if not database_id:
raise ValueError("Database ID is required")
# Validate dataset exists and is accessible
validation_result = await self.validate_dataset(database_id)
if not validation_result['valid']:
raise ValueError(f"Dataset validation failed: {validation_result['error']}")
# Prepare database configuration
config = {
"name": database_info.get('name', database_id.split('/')[-1]),
"name_ar": database_info.get('name_ar', ''),
"dataset_id": database_id,
"category": database_info.get('category', 'general'),
"description": database_info.get('description', ''),
"description_ar": database_info.get('description_ar', ''),
"size": database_info.get('size', 'Unknown'),
"language": database_info.get('language', 'Unknown'),
"modality": database_info.get('modality', 'text'),
"license": database_info.get('license', 'Unknown'),
"added_date": datetime.now().isoformat(),
"status": "available",
"validation": validation_result
}
# Add to configuration
self.databases_config[database_id] = config
self._save_config(self.databases_config)
logger.info(f"Added database: {database_id}")
return True
except Exception as e:
logger.error(f"Error adding database: {e}")
return False
async def validate_dataset(self, dataset_id: str) -> Dict[str, Any]:
"""Validate that a dataset exists and is accessible"""
try:
logger.info(f"Validating dataset: {dataset_id}")
# Try to load dataset info
dataset = load_dataset(dataset_id, split="train", streaming=True)
# Get basic info
sample = next(iter(dataset))
features = list(sample.keys()) if sample else []
return {
"valid": True,
"features": features,
"sample_keys": features,
"accessible": True,
"error": None
}
except Exception as e:
logger.warning(f"Dataset validation failed for {dataset_id}: {e}")
return {
"valid": False,
"features": [],
"sample_keys": [],
"accessible": False,
"error": str(e)
}
def get_all_databases(self) -> Dict[str, Any]:
"""Get all configured databases"""
return self.databases_config
def get_selected_databases(self) -> List[str]:
"""Get list of selected database IDs"""
return self.selected_databases
def select_database(self, database_id: str) -> bool:
"""Select a database for use"""
try:
if database_id not in self.databases_config:
raise ValueError(f"Database {database_id} not found in configuration")
if database_id not in self.selected_databases:
self.selected_databases.append(database_id)
self._save_selected_databases()
logger.info(f"Selected database: {database_id}")
return True
except Exception as e:
logger.error(f"Error selecting database: {e}")
return False
def deselect_database(self, database_id: str) -> bool:
"""Deselect a database"""
try:
if database_id in self.selected_databases:
self.selected_databases.remove(database_id)
self._save_selected_databases()
logger.info(f"Deselected database: {database_id}")
return True
except Exception as e:
logger.error(f"Error deselecting database: {e}")
return False
def remove_database(self, database_id: str) -> bool:
"""Remove a database from configuration"""
try:
if database_id in self.databases_config:
del self.databases_config[database_id]
self._save_config(self.databases_config)
if database_id in self.selected_databases:
self.selected_databases.remove(database_id)
self._save_selected_databases()
logger.info(f"Removed database: {database_id}")
return True
except Exception as e:
logger.error(f"Error removing database: {e}")
return False
def get_database_info(self, database_id: str) -> Optional[Dict[str, Any]]:
"""Get detailed information about a specific database"""
return self.databases_config.get(database_id)
def get_databases_by_category(self, category: str) -> Dict[str, Any]:
"""Get databases filtered by category"""
return {
db_id: db_info
for db_id, db_info in self.databases_config.items()
if db_info.get('category') == category
}
async def load_selected_datasets(self, max_samples: int = 1000) -> Dict[str, Any]:
"""Load data from selected datasets"""
loaded_datasets = {}
for database_id in self.selected_databases:
try:
logger.info(f"Loading dataset: {database_id}")
dataset = load_dataset(database_id, split="train", streaming=True)
samples = list(dataset.take(max_samples))
loaded_datasets[database_id] = {
"samples": samples,
"count": len(samples),
"info": self.databases_config.get(database_id, {})
}
logger.info(f"Loaded {len(samples)} samples from {database_id}")
except Exception as e:
logger.error(f"Error loading dataset {database_id}: {e}")
loaded_datasets[database_id] = {
"samples": [],
"count": 0,
"error": str(e),
"info": self.databases_config.get(database_id, {})
}
return loaded_datasets