train-modle / src /model_loader.py
fokan's picture
Initial clean commit: Multi-Modal Knowledge Distillation Platform
ab4e093
"""
Model Loading Utilities
Provides comprehensive model loading capabilities for various formats and sources
including PyTorch models, Safetensors, and Hugging Face transformers.
"""
import os
import logging
import asyncio
from typing import Dict, Any, Optional, Union, List
from pathlib import Path
import json
import requests
from urllib.parse import urlparse
import tempfile
import shutil
import torch
import torch.nn as nn
from transformers import (
AutoModel, AutoTokenizer, AutoConfig, AutoImageProcessor,
AutoFeatureExtractor, AutoProcessor, AutoModelForCausalLM,
AutoModelForSeq2SeqLM
)
from safetensors import safe_open
from safetensors.torch import load_file as load_safetensors
import numpy as np
from PIL import Image
logger = logging.getLogger(__name__)
# Custom model configurations for special architectures
CUSTOM_MODEL_CONFIGS = {
'ti2v': {
'model_type': 'ti2v',
'architecture': 'TI2VModel',
'modalities': ['text', 'vision'],
'supports_generation': True,
'is_multimodal': True
},
'diffusion': {
'model_type': 'diffusion',
'architecture': 'DiffusionModel',
'modalities': ['vision', 'text'],
'supports_generation': True,
'is_multimodal': True
}
}
class ModelLoader:
"""
Comprehensive model loader supporting multiple formats and sources
"""
def __init__(self):
self.supported_formats = {
'.pt': 'pytorch',
'.pth': 'pytorch',
'.bin': 'pytorch',
'.safetensors': 'safetensors',
'.onnx': 'onnx',
'.h5': 'keras',
'.pkl': 'pickle',
'.joblib': 'joblib'
}
self.modality_keywords = {
'text': ['bert', 'gpt', 'roberta', 'electra', 'deberta', 'xlm', 'xlnet', 't5', 'bart'],
'vision': ['vit', 'resnet', 'efficientnet', 'convnext', 'swin', 'deit', 'beit'],
'multimodal': ['clip', 'blip', 'albef', 'flava', 'layoutlm', 'donut'],
'audio': ['wav2vec', 'hubert', 'whisper', 'speech_t5']
}
async def load_model(self, source: str, **kwargs) -> Dict[str, Any]:
"""
Load a model from various sources
Args:
source: Model source (file path, HF repo, URL)
**kwargs: Additional loading parameters
Returns:
Dictionary containing model, tokenizer/processor, and metadata
"""
try:
logger.info(f"Loading model from: {source}")
# Determine source type
if self._is_url(source):
return await self._load_from_url(source, **kwargs)
elif self._is_huggingface_repo(source):
return await self._load_from_huggingface(source, **kwargs)
elif Path(source).exists():
return await self._load_from_file(source, **kwargs)
else:
raise ValueError(f"Invalid model source: {source}")
except Exception as e:
logger.error(f"Error loading model from {source}: {str(e)}")
raise
async def get_model_info(self, source: str) -> Dict[str, Any]:
"""
Get model information without loading the full model
Args:
source: Model source
Returns:
Model metadata and information
"""
try:
info = {
'source': source,
'format': 'unknown',
'modality': 'unknown',
'architecture': None,
'parameters': None,
'size_mb': None
}
if Path(source).exists():
file_path = Path(source)
info['size_mb'] = file_path.stat().st_size / (1024 * 1024)
info['format'] = self.supported_formats.get(file_path.suffix, 'unknown')
# Try to extract more info based on format
if info['format'] == 'safetensors':
info.update(await self._get_safetensors_info(source))
elif info['format'] == 'pytorch':
info.update(await self._get_pytorch_info(source))
elif self._is_huggingface_repo(source):
info.update(await self._get_huggingface_info(source))
# Detect modality from model name/architecture
info['modality'] = self._detect_modality(source, info.get('architecture', ''))
return info
except Exception as e:
logger.warning(f"Error getting model info for {source}: {str(e)}")
return {'source': source, 'error': str(e)}
def _is_url(self, source: str) -> bool:
"""Check if source is a URL"""
try:
result = urlparse(source)
return all([result.scheme, result.netloc])
except:
return False
def _is_huggingface_repo(self, source: str) -> bool:
"""Check if source is a Hugging Face repository"""
# Simple heuristic: contains '/' but not a file extension
return '/' in source and not any(source.endswith(ext) for ext in self.supported_formats.keys())
def _detect_modality(self, source: str, architecture: str) -> str:
"""Detect model modality from source and architecture"""
text = (source + ' ' + architecture).lower()
for modality, keywords in self.modality_keywords.items():
if any(keyword in text for keyword in keywords):
return modality
return 'unknown'
async def _load_from_file(self, file_path: str, **kwargs) -> Dict[str, Any]:
"""Load model from local file"""
file_path = Path(file_path)
format_type = self.supported_formats.get(file_path.suffix, 'unknown')
if format_type == 'safetensors':
return await self._load_safetensors(file_path, **kwargs)
elif format_type == 'pytorch':
return await self._load_pytorch(file_path, **kwargs)
else:
raise ValueError(f"Unsupported format: {format_type}")
async def _load_from_url(self, url: str, **kwargs) -> Dict[str, Any]:
"""Load model from URL"""
# Download to temporary file
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
response = requests.get(url, stream=True)
response.raise_for_status()
for chunk in response.iter_content(chunk_size=8192):
tmp_file.write(chunk)
tmp_path = tmp_file.name
try:
# Load from temporary file
result = await self._load_from_file(tmp_path, **kwargs)
result['source_url'] = url
return result
finally:
# Cleanup temporary file
os.unlink(tmp_path)
async def _load_from_huggingface(self, repo_id: str, **kwargs) -> Dict[str, Any]:
"""Load model from Hugging Face repository"""
try:
# Get HF token from multiple sources
hf_token = (
kwargs.get('token') or
os.getenv('HF_TOKEN') or
os.getenv('HUGGINGFACE_TOKEN') or
os.getenv('HUGGINGFACE_HUB_TOKEN')
)
logger.info(f"Loading model {repo_id} with token: {'Yes' if hf_token else 'No'}")
# Load configuration first with timeout
trust_remote_code = kwargs.get('trust_remote_code', False)
logger.info(f"Loading config for {repo_id} with trust_remote_code={trust_remote_code}")
try:
config = AutoConfig.from_pretrained(
repo_id,
trust_remote_code=trust_remote_code,
token=hf_token,
timeout=30 # 30 second timeout
)
logger.info(f"Successfully loaded config for {repo_id}")
except Exception as e:
logger.error(f"Failed to load config for {repo_id}: {e}")
raise ValueError(f"Could not load model configuration: {str(e)}")
# Load model with proper device handling
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Check if this is a large model and warn
model_size_gb = self._estimate_model_size(config)
if model_size_gb > 10:
logger.warning(f"Large model detected ({model_size_gb:.1f}GB estimated). This may take several minutes to load.")
# Check for custom architectures that need special handling
model_type = getattr(config, 'model_type', None)
# Try different loading strategies for different model types
model = None
loading_error = None
# Special handling for ti2v and other custom architectures
if model_type in CUSTOM_MODEL_CONFIGS:
try:
logger.info(f"Loading custom architecture {model_type} for {repo_id}...")
model = await self._load_custom_architecture(repo_id, config, hf_token, trust_remote_code, **kwargs)
except Exception as e:
logger.warning(f"Custom architecture loading failed: {e}")
loading_error = str(e)
# Strategy 1: Try AutoModel (most common) if not already loaded
if model is None:
try:
logger.info(f"Attempting to load {repo_id} with AutoModel...")
model = AutoModel.from_pretrained(
repo_id,
config=config,
torch_dtype=kwargs.get('torch_dtype', torch.float32),
trust_remote_code=trust_remote_code,
token=hf_token,
low_cpu_mem_usage=True,
timeout=120 # 2 minute timeout for model loading
)
logger.info(f"Successfully loaded {repo_id} with AutoModel")
except Exception as e:
loading_error = str(e)
logger.warning(f"AutoModel failed for {repo_id}: {e}")
# Strategy 2: Try specific model classes for known types
if model is None:
model = await self._try_specific_model_classes(repo_id, config, hf_token, trust_remote_code, kwargs)
# Strategy 3: Try with trust_remote_code if not already enabled
if model is None and not trust_remote_code:
try:
logger.info(f"Trying {repo_id} with trust_remote_code=True")
# For Gemma 3 models, try AutoModelForCausalLM specifically
if 'gemma-3' in repo_id.lower() or 'gemma3' in str(config).lower():
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
repo_id,
config=config,
torch_dtype=kwargs.get('torch_dtype', torch.float32),
trust_remote_code=True,
token=hf_token,
low_cpu_mem_usage=True
)
else:
model = AutoModel.from_pretrained(
repo_id,
config=config,
torch_dtype=kwargs.get('torch_dtype', torch.float32),
trust_remote_code=True,
token=hf_token,
low_cpu_mem_usage=True
)
logger.info(f"Successfully loaded {repo_id} with trust_remote_code=True")
except Exception as e:
logger.warning(f"Loading with trust_remote_code=True failed: {e}")
if model is None:
raise ValueError(f"Could not load model {repo_id}. Last error: {loading_error}")
# Move to device manually
model = model.to(device)
# Load appropriate processor/tokenizer
processor = None
try:
# Try different processor types
for processor_class in [AutoTokenizer, AutoImageProcessor, AutoFeatureExtractor, AutoProcessor]:
try:
processor = processor_class.from_pretrained(repo_id, token=hf_token)
break
except:
continue
except Exception as e:
logger.warning(f"Could not load processor for {repo_id}: {e}")
return {
'model': model,
'processor': processor,
'config': config,
'source': repo_id,
'format': 'huggingface',
'architecture': config.architectures[0] if hasattr(config, 'architectures') and config.architectures else None,
'modality': self._detect_modality(repo_id, str(config.architectures) if hasattr(config, 'architectures') else ''),
'parameters': sum(p.numel() for p in model.parameters()) if hasattr(model, 'parameters') else None
}
except Exception as e:
logger.error(f"Error loading from Hugging Face repo {repo_id}: {str(e)}")
raise
async def _load_custom_architecture(self, repo_id: str, config, hf_token: str, trust_remote_code: bool, **kwargs):
"""Load models with custom architectures like ti2v"""
try:
model_type = getattr(config, 'model_type', None)
logger.info(f"Loading custom architecture: {model_type}")
if model_type == 'ti2v':
# For ti2v models, we need to create a wrapper that can work with our distillation
return await self._load_ti2v_model(repo_id, config, hf_token, trust_remote_code, **kwargs)
else:
# For other custom architectures, try with trust_remote_code
logger.info(f"Attempting to load custom model {repo_id} with trust_remote_code=True")
# Try different model classes
model_classes = [AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM]
for model_class in model_classes:
try:
model = model_class.from_pretrained(
repo_id,
config=config,
trust_remote_code=True, # Force trust_remote_code for custom architectures
token=hf_token,
low_cpu_mem_usage=True,
torch_dtype=torch.float32
)
logger.info(f"Successfully loaded {repo_id} with {model_class.__name__}")
return model
except Exception as e:
logger.warning(f"{model_class.__name__} failed for {repo_id}: {e}")
continue
raise ValueError(f"All loading strategies failed for custom architecture {model_type}")
except Exception as e:
logger.error(f"Error loading custom architecture: {e}")
raise
async def _load_ti2v_model(self, repo_id: str, config, hf_token: str, trust_remote_code: bool, **kwargs):
"""Special handling for ti2v (Text-to-Image/Video) models"""
try:
logger.info(f"Loading ti2v model: {repo_id}")
# For ti2v models, we'll create a wrapper that extracts text features
# This allows us to use them in knowledge distillation
# Try to load with trust_remote_code=True (required for custom architectures)
model = AutoModel.from_pretrained(
repo_id,
config=config,
trust_remote_code=True,
token=hf_token,
low_cpu_mem_usage=True,
torch_dtype=torch.float32
)
# Create a wrapper that can extract features for distillation
class TI2VWrapper(torch.nn.Module):
def __init__(self, base_model):
super().__init__()
self.base_model = base_model
self.config = base_model.config
def forward(self, input_ids=None, attention_mask=None, **kwargs):
# Extract text encoder features if available
if hasattr(self.base_model, 'text_encoder'):
return self.base_model.text_encoder(input_ids=input_ids, attention_mask=attention_mask)
elif hasattr(self.base_model, 'encoder'):
return self.base_model.encoder(input_ids=input_ids, attention_mask=attention_mask)
else:
# Fallback: try to get some meaningful representation
return self.base_model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
wrapped_model = TI2VWrapper(model)
logger.info(f"Successfully wrapped ti2v model: {repo_id}")
return wrapped_model
except Exception as e:
logger.error(f"Error loading ti2v model {repo_id}: {e}")
raise
async def _load_safetensors(self, file_path: Path, **kwargs) -> Dict[str, Any]:
"""Load model from Safetensors format"""
try:
# Load tensors
tensors = {}
with safe_open(file_path, framework="pt", device="cpu") as f:
for key in f.keys():
tensors[key] = f.get_tensor(key)
# Try to reconstruct model architecture
model = self._reconstruct_model_from_tensors(tensors)
return {
'model': model,
'tensors': tensors,
'source': str(file_path),
'format': 'safetensors',
'parameters': sum(tensor.numel() for tensor in tensors.values()),
'tensor_keys': list(tensors.keys())
}
except Exception as e:
logger.error(f"Error loading Safetensors file {file_path}: {str(e)}")
raise
async def _load_pytorch(self, file_path: Path, **kwargs) -> Dict[str, Any]:
"""Load PyTorch model"""
try:
# Load checkpoint
checkpoint = torch.load(file_path, map_location='cpu')
# Extract model and metadata
if isinstance(checkpoint, dict):
model = checkpoint.get('model', checkpoint.get('state_dict', checkpoint))
metadata = {k: v for k, v in checkpoint.items() if k not in ['model', 'state_dict']}
else:
model = checkpoint
metadata = {}
return {
'model': model,
'metadata': metadata,
'source': str(file_path),
'format': 'pytorch',
'parameters': sum(tensor.numel() for tensor in model.values()) if isinstance(model, dict) else None
}
except Exception as e:
logger.error(f"Error loading PyTorch file {file_path}: {str(e)}")
raise
def _reconstruct_model_from_tensors(self, tensors: Dict[str, torch.Tensor]) -> nn.Module:
"""
Attempt to reconstruct a PyTorch model from tensor dictionary
This is a simplified implementation - in practice, this would need
more sophisticated architecture detection
"""
class GenericModel(nn.Module):
def __init__(self, tensors):
super().__init__()
self.tensors = nn.ParameterDict()
for name, tensor in tensors.items():
self.tensors[name.replace('.', '_')] = nn.Parameter(tensor)
def forward(self, x):
# Placeholder forward pass
return x
return GenericModel(tensors)
async def _get_safetensors_info(self, file_path: str) -> Dict[str, Any]:
"""Get information from Safetensors file"""
try:
info = {}
with safe_open(file_path, framework="pt", device="cpu") as f:
keys = list(f.keys())
info['tensor_count'] = len(keys)
info['tensor_keys'] = keys[:10] # First 10 keys
# Estimate parameters
total_params = 0
for key in keys:
tensor = f.get_tensor(key)
total_params += tensor.numel()
info['parameters'] = total_params
return info
except Exception as e:
logger.warning(f"Error getting Safetensors info: {e}")
return {}
async def _get_pytorch_info(self, file_path: str) -> Dict[str, Any]:
"""Get information from PyTorch file"""
try:
checkpoint = torch.load(file_path, map_location='cpu')
info = {}
if isinstance(checkpoint, dict):
info['keys'] = list(checkpoint.keys())
# Look for model/state_dict
model_data = checkpoint.get('model', checkpoint.get('state_dict', checkpoint))
if isinstance(model_data, dict):
info['parameters'] = sum(tensor.numel() for tensor in model_data.values())
info['layer_count'] = len(model_data)
return info
except Exception as e:
logger.warning(f"Error getting PyTorch info: {e}")
return {}
async def _get_huggingface_info(self, repo_id: str) -> Dict[str, Any]:
"""Get information from Hugging Face repository"""
try:
hf_token = (
os.getenv('HF_TOKEN') or
os.getenv('HUGGINGFACE_TOKEN') or
os.getenv('HUGGINGFACE_HUB_TOKEN')
)
config = AutoConfig.from_pretrained(repo_id, token=hf_token)
info = {
'architecture': config.architectures[0] if hasattr(config, 'architectures') and config.architectures else None,
'model_type': getattr(config, 'model_type', None),
'hidden_size': getattr(config, 'hidden_size', None),
'num_layers': getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', None)),
'vocab_size': getattr(config, 'vocab_size', None)
}
return info
except Exception as e:
logger.warning(f"Error getting Hugging Face info: {e}")
return {}
async def _try_specific_model_classes(self, repo_id: str, config, hf_token: str, trust_remote_code: bool, kwargs: Dict[str, Any]):
"""Try loading with specific model classes for known architectures"""
from transformers import (
AutoModelForCausalLM, AutoModelForSequenceClassification,
AutoModelForTokenClassification, AutoModelForQuestionAnswering,
AutoModelForMaskedLM, AutoModelForImageClassification,
AutoModelForObjectDetection, AutoModelForSemanticSegmentation,
AutoModelForImageSegmentation, AutoModelForDepthEstimation,
AutoModelForZeroShotImageClassification
)
# Map model types to appropriate AutoModel classes
model_type = getattr(config, 'model_type', '').lower()
architecture = getattr(config, 'architectures', [])
arch_str = str(architecture).lower() if architecture else ''
model_classes_to_try = []
# Determine appropriate model classes based on model type and architecture
if 'siglip' in model_type or 'siglip' in arch_str:
# SigLIP models - try vision-related classes
model_classes_to_try = [
AutoModelForImageClassification,
AutoModelForZeroShotImageClassification,
AutoModel
]
elif 'clip' in model_type or 'clip' in arch_str:
model_classes_to_try = [AutoModelForZeroShotImageClassification, AutoModel]
elif 'vit' in model_type or 'vision' in model_type:
model_classes_to_try = [AutoModelForImageClassification, AutoModel]
elif 'bert' in model_type or 'roberta' in model_type:
model_classes_to_try = [AutoModelForMaskedLM, AutoModelForSequenceClassification, AutoModel]
elif 'gemma' in model_type or 'gemma' in arch_str:
# Gemma models (including Gemma 3) - try causal LM classes
model_classes_to_try = [AutoModelForCausalLM, AutoModel]
elif 'gpt' in model_type or 'llama' in model_type:
model_classes_to_try = [AutoModelForCausalLM, AutoModel]
else:
# Generic fallback
model_classes_to_try = [
AutoModelForCausalLM, # Try causal LM first for newer models
AutoModelForSequenceClassification,
AutoModelForImageClassification,
AutoModel
]
# Try each model class
for model_class in model_classes_to_try:
try:
logger.info(f"Trying {repo_id} with {model_class.__name__}")
model = model_class.from_pretrained(
repo_id,
config=config,
torch_dtype=kwargs.get('torch_dtype', torch.float32),
trust_remote_code=trust_remote_code,
token=hf_token,
low_cpu_mem_usage=True
)
logger.info(f"Successfully loaded {repo_id} with {model_class.__name__}")
return model
except Exception as e:
logger.debug(f"{model_class.__name__} failed for {repo_id}: {e}")
continue
return None
async def load_trained_student(self, model_path: str) -> Dict[str, Any]:
"""Load a previously trained student model for retraining"""
try:
# Check if it's a Hugging Face model (starts with organization/)
if '/' in model_path and not Path(model_path).exists():
# This is likely a Hugging Face repository
return await self._load_student_from_huggingface(model_path)
# Local model path
model_dir = Path(model_path)
# Check if it's a trained student model
config_path = model_dir / "config.json"
if not config_path.exists():
# Try alternative naming
safetensors_files = list(model_dir.glob("*.safetensors"))
if safetensors_files:
config_path = safetensors_files[0].with_suffix('_config.json')
if not config_path.exists():
raise ValueError("No configuration file found for student model")
# Load configuration
with open(config_path, 'r') as f:
config = json.load(f)
# Verify it's a student model
if not config.get('is_student_model', False):
raise ValueError("This is not a trained student model")
# Load training history
history_path = model_dir / "training_history.json"
if not history_path.exists():
# Try alternative naming
safetensors_files = list(model_dir.glob("*.safetensors"))
if safetensors_files:
history_path = safetensors_files[0].with_suffix('_training_history.json')
training_history = {}
if history_path.exists():
with open(history_path, 'r') as f:
training_history = json.load(f)
# Load model weights
model_file = None
for ext in ['.safetensors', '.bin', '.pt']:
potential_file = model_dir / f"student_model{ext}"
if potential_file.exists():
model_file = potential_file
break
if not model_file:
# Look for any model file
for ext in ['.safetensors', '.bin', '.pt']:
files = list(model_dir.glob(f"*{ext}"))
if files:
model_file = files[0]
break
if not model_file:
raise ValueError("No model file found")
return {
'type': 'trained_student',
'path': str(model_path),
'config': config,
'training_history': training_history,
'model_file': str(model_file),
'can_be_retrained': config.get('can_be_retrained', True),
'original_teachers': training_history.get('retraining_info', {}).get('original_teachers', []),
'recommended_lr': training_history.get('retraining_info', {}).get('recommended_learning_rate', 1e-5),
'modalities': config.get('modalities', ['text']),
'architecture': config.get('architecture', 'unknown')
}
except Exception as e:
logger.error(f"Error loading trained student model: {e}")
raise
async def _load_student_from_huggingface(self, repo_id: str) -> Dict[str, Any]:
"""Load a student model from Hugging Face repository"""
try:
# Get HF token
hf_token = (
os.getenv('HF_TOKEN') or
os.getenv('HUGGINGFACE_TOKEN') or
os.getenv('HUGGINGFACE_HUB_TOKEN')
)
logger.info(f"Loading student model from Hugging Face: {repo_id}")
# Load configuration
config = AutoConfig.from_pretrained(repo_id, token=hf_token)
# Try to load the model to verify it exists and is accessible
model = await self._load_from_huggingface(repo_id, token=hf_token)
# Check if it's marked as a student model (optional)
is_student = config.get('is_student_model', False)
return {
'type': 'huggingface_student',
'path': repo_id,
'config': config.__dict__ if hasattr(config, '__dict__') else {},
'training_history': {}, # HF models may not have our training history
'model_file': repo_id, # For HF models, this is the repo ID
'can_be_retrained': True,
'original_teachers': [], # Unknown for external models
'recommended_lr': 1e-5, # Default learning rate
'modalities': ['text'], # Default, could be enhanced
'architecture': getattr(config, 'architectures', ['unknown'])[0] if hasattr(config, 'architectures') else 'unknown',
'is_huggingface': True
}
except Exception as e:
logger.error(f"Error loading student model from Hugging Face: {e}")
raise ValueError(f"Could not load student model from Hugging Face: {str(e)}")
async def load_trained_student_from_space(self, space_name: str) -> Dict[str, Any]:
"""Load a student model from a Hugging Face Space"""
try:
# Get HF token
hf_token = (
os.getenv('HF_TOKEN') or
os.getenv('HUGGINGFACE_TOKEN') or
os.getenv('HUGGINGFACE_HUB_TOKEN')
)
logger.info(f"Loading student model from Hugging Face Space: {space_name}")
from huggingface_hub import HfApi
api = HfApi(token=hf_token)
# List files in the Space to find model files
try:
files = api.list_repo_files(space_name, repo_type="space")
# Look for model files in models directory
model_files = [f for f in files if f.startswith('models/') and f.endswith(('.safetensors', '.bin', '.pt'))]
if not model_files:
# Look for model files in root
model_files = [f for f in files if f.endswith(('.safetensors', '.bin', '.pt'))]
if not model_files:
raise ValueError(f"No model files found in Space {space_name}")
# Use the first model file found
model_file = model_files[0]
logger.info(f"Found model file in Space: {model_file}")
# For now, we'll treat Space models as external HF models
# In the future, we could download and cache them locally
return {
'type': 'space_student',
'path': space_name,
'config': {}, # Space models may not have our config format
'training_history': {}, # Unknown for space models
'model_file': model_file,
'can_be_retrained': True,
'original_teachers': [], # Unknown for external models
'recommended_lr': 1e-5, # Default learning rate
'modalities': ['text'], # Default, could be enhanced
'architecture': 'unknown',
'is_space': True,
'space_name': space_name,
'available_models': model_files
}
except Exception as e:
logger.error(f"Error accessing Space files: {e}")
# Fallback: treat as a regular HF model
return await self._load_student_from_huggingface(space_name)
except Exception as e:
logger.error(f"Error loading student model from Space: {e}")
raise ValueError(f"Could not load student model from Space: {str(e)}")
def _estimate_model_size(self, config) -> float:
"""Estimate model size in GB based on configuration"""
try:
# Get basic parameters
hidden_size = getattr(config, 'hidden_size', 768)
num_layers = getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', 12))
vocab_size = getattr(config, 'vocab_size', 50000)
# Rough estimation: parameters * 4 bytes (float32) / 1GB
# This is a very rough estimate
embedding_params = vocab_size * hidden_size
layer_params = num_layers * (hidden_size * hidden_size * 4) # Simplified
total_params = embedding_params + layer_params
# Convert to GB (4 bytes per parameter for float32)
size_gb = (total_params * 4) / (1024 ** 3)
return max(size_gb, 0.1) # Minimum 0.1GB
except Exception:
return 1.0 # Default 1GB if estimation fails
def validate_model_compatibility(self, models: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Validate that multiple models are compatible for knowledge distillation
Args:
models: List of loaded model dictionaries
Returns:
Validation result with compatibility information
"""
if not models:
return {'compatible': False, 'reason': 'No models provided'}
if len(models) < 2:
return {'compatible': False, 'reason': 'At least 2 models required for distillation'}
# Check modality compatibility
modalities = [model.get('modality', 'unknown') for model in models]
unique_modalities = set(modalities)
# Allow same modality or multimodal combinations
if len(unique_modalities) == 1 and 'unknown' not in unique_modalities:
compatibility_type = 'same_modality'
elif 'multimodal' in unique_modalities or len(unique_modalities) > 1:
compatibility_type = 'cross_modal'
else:
return {'compatible': False, 'reason': 'Unknown modalities detected'}
return {
'compatible': True,
'type': compatibility_type,
'modalities': list(unique_modalities),
'model_count': len(models),
'total_parameters': sum(model.get('parameters', 0) for model in models if model.get('parameters'))
}