neo / basicsr /train.py
freevpn's picture
Upload folder using huggingface_hub
8234608 verified
import argparse
import datetime
import logging
import math
import random
import time
import torch
import platform
from os import path as osp
import warnings
from basicsr.data import build_dataloader, build_dataset
from basicsr.data.data_sampler import EnlargedSampler
from basicsr.data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher
from basicsr.models import build_model
from basicsr.utils import (
MessageLogger, check_resume, get_env_info, get_root_logger, init_tb_logger,
init_wandb_logger, make_exp_dirs, mkdir_and_rename, set_random_seed
)
from basicsr.utils.dist_util import get_dist_info, init_dist
from basicsr.utils.options import dict2str, parse
# ----------- DEVICE SELECTION ----------
def select_device(prefer_coreml=True):
if torch.backends.mps.is_available() and prefer_coreml and platform.system() == "Darwin":
print("BasicSR: Using CoreML backend (MPS).")
return torch.device("mps")
elif torch.cuda.is_available():
print("BasicSR: Using CUDA backend.")
return torch.device("cuda")
else:
print("BasicSR: Using CPU backend.")
return torch.device("cpu")
DEVICE = select_device(prefer_coreml=True)
# ignore UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`.
warnings.filterwarnings("ignore", category=UserWarning)
def parse_options(root_path, is_train=True):
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = parse(args.opt, root_path, is_train=is_train)
# distributed settings
if args.launcher == 'none' or DEVICE.type != 'cuda':
opt['dist'] = False
print('Distributed training disabled.', flush=True)
else:
opt['dist'] = True
if args.launcher == 'slurm' and 'dist_params' in opt:
init_dist(args.launcher, **opt['dist_params'])
else:
init_dist(args.launcher)
opt['rank'], opt['world_size'] = get_dist_info()
# random seed
seed = opt.get('manual_seed')
if seed is None:
seed = random.randint(1, 10000)
opt['manual_seed'] = seed
set_random_seed(seed + opt['rank'])
return opt
def init_loggers(opt):
log_file = osp.join(opt['path']['log'], f"train_{opt['name']}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(opt))
if (opt['logger'].get('wandb') is not None) and (opt['logger']['wandb'].get('project') is not None):
assert opt['logger'].get('use_tb_logger') is True
init_wandb_logger(opt)
tb_logger = None
if opt['logger'].get('use_tb_logger'):
tb_logger = init_tb_logger(log_dir=osp.join('tb_logger', opt['name']))
return logger, tb_logger
def create_train_val_dataloader(opt, logger):
train_loader, val_loader = None, None
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
train_set = build_dataset(dataset_opt)
train_sampler = EnlargedSampler(train_set, opt['world_size'], opt['rank'], dataset_enlarge_ratio)
train_loader = build_dataloader(train_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=train_sampler, seed=opt['manual_seed'])
num_iter_per_epoch = math.ceil(len(train_set) * dataset_enlarge_ratio / (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
total_iters = int(opt['train']['total_iter'])
total_epochs = math.ceil(total_iters / num_iter_per_epoch)
logger.info(f'Training stats:\n\tTrain images: {len(train_set)}\n\tEnlarge ratio: {dataset_enlarge_ratio}\n\tBatch/GPU: {dataset_opt["batch_size_per_gpu"]}\n\tGPUs: {opt["world_size"]}\n\tIters/epoch: {num_iter_per_epoch}\n\tTotal epochs: {total_epochs}, Iters: {total_iters}')
elif phase == 'val':
val_set = build_dataset(dataset_opt)
val_loader = build_dataloader(val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed'])
logger.info(f'Validation items in {dataset_opt["name"]}: {len(val_set)}')
else:
raise ValueError(f'Dataset phase {phase} not recognized.')
return train_loader, train_sampler, val_loader, total_epochs, total_iters
def train_pipeline(root_path):
opt = parse_options(root_path, is_train=True)
if DEVICE.type == 'cuda':
torch.backends.cudnn.benchmark = True
if opt['path'].get('resume_state'):
resume_state = torch.load(opt['path']['resume_state'], map_location=DEVICE)
else:
resume_state = None
if resume_state is None:
make_exp_dirs(opt)
if opt['logger'].get('use_tb_logger') and opt['rank'] == 0:
mkdir_and_rename(osp.join('tb_logger', opt['name']))
logger, tb_logger = init_loggers(opt)
train_loader, train_sampler, val_loader, total_epochs, total_iters = create_train_val_dataloader(opt, logger)
if resume_state:
check_resume(opt, resume_state['iter'])
model = build_model(opt).to(DEVICE)
model.resume_training(resume_state)
logger.info(f"Resuming from epoch {resume_state['epoch']}, iter {resume_state['iter']}")
start_epoch = resume_state['epoch']
current_iter = resume_state['iter']
else:
model = build_model(opt).to(DEVICE)
start_epoch = 0
current_iter = 0
msg_logger = MessageLogger(opt, current_iter, tb_logger)
prefetch_mode = opt['datasets']['train'].get('prefetch_mode')
if prefetch_mode is None or prefetch_mode == 'cpu' or DEVICE.type in ['cpu', 'mps']:
if prefetch_mode == 'cuda' and DEVICE.type == 'mps':
logger.warning("CUDA prefetch requested but MPS (CoreML) is in use. Falling back to CPU prefetch.")
prefetcher = CPUPrefetcher(train_loader)
elif prefetch_mode == 'cuda':
if DEVICE.type != 'cuda':
logger.warning("CUDA prefetch requested but CUDA unavailable. Using CPU prefetch.")
prefetcher = CPUPrefetcher(train_loader)
else:
if opt['datasets']['train'].get('pin_memory') is not True:
raise ValueError('Set pin_memory=True for CUDAPrefetcher.')
prefetcher = CUDAPrefetcher(train_loader, opt)
logger.info(f'Using CUDA prefetcher')
else:
raise ValueError(f"Invalid prefetch_mode: {prefetch_mode}. Supported: 'cpu', 'cuda', None")
logger.info(f'Start training at epoch {start_epoch}, iter {current_iter + 1}')
start_time = time.time()
data_time, iter_time = time.time(), time.time()
for epoch in range(start_epoch, total_epochs + 1):
train_sampler.set_epoch(epoch)
prefetcher.reset()
train_data = prefetcher.next()
while train_data is not None:
data_time = time.time() - data_time
current_iter += 1
if current_iter > total_iters:
break
model.update_learning_rate(current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
model.feed_data(train_data)
model.optimize_parameters(current_iter)
iter_time = time.time() - iter_time
if current_iter % opt['logger']['print_freq'] == 0:
log_vars = {'epoch': epoch, 'iter': current_iter}
log_vars.update({'lrs': model.get_current_learning_rate()})
log_vars.update({'time': iter_time, 'data_time': data_time})
log_vars.update(model.get_current_log())
msg_logger(log_vars)
if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
logger.info('Saving model and training state.')
model.save(epoch, current_iter)
if opt.get('val') and opt['datasets'].get('val') and (current_iter % opt['val']['val_freq'] == 0):
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
data_time = time.time()
iter_time = time.time()
train_data = prefetcher.next()
consumed_time = str(datetime.timedelta(seconds=int(time.time() - start_time)))
logger.info(f'Training complete. Time: {consumed_time}')
logger.info('Saving latest model.')
model.save(epoch=-1, current_iter=-1)
if opt.get('val') and opt['datasets'].get('val'):
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
if tb_logger:
tb_logger.close()
if __name__ == '__main__':
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
train_pipeline(root_path)