neo / refacer.py
freevpn's picture
Upload folder using huggingface_hub
8234608 verified
import cv2
import onnxruntime as rt
import sys
sys.path.insert(1, './recognition')
from scrfd import SCRFD
from arcface_onnx import ArcFaceONNX
import os.path as osp
import os
import requests
from tqdm import tqdm
import ffmpeg
import random
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor
from insightface.model_zoo.inswapper import INSwapper
import psutil
from enum import Enum
from insightface.app.common import Face
from insightface.utils.storage import ensure_available
import re
import subprocess
from PIL import Image
import numpy as np
import time
from codeformer_wrapper import enhance_image, enhance_image_memory
import tempfile
gc = __import__('gc')
# Preload NVIDIA DLLs if Windows
if sys.platform in ("win32", "win64"):
if hasattr(os, "add_dll_directory"):
try:
os.add_dll_directory(r"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6\bin")
os.add_dll_directory(r"C:\Program Files\NVIDIA\CUDNN\v9.4\bin\12.6")
except Exception as e:
print(f"[INFO] Failed to add CUDA or CUDNN DLL directory: {e}")
print("[INFO] This error can be ignored if running in CPU mode. Otherwise, make sure the paths are correct.")
if hasattr(rt, "preload_dlls"):
rt.preload_dlls()
class RefacerMode(Enum):
CPU, CUDA, COREML, TENSORRT = range(1, 5)
class Refacer:
def __init__(self, force_cpu=False, colab_performance=False):
self.disable_similarity = False
self.multiple_faces_mode = False
self.first_face = False
self.force_cpu = force_cpu
self.colab_performance = colab_performance
self.use_num_cpus = mp.cpu_count()
self.__check_encoders()
self.__check_providers()
self.total_mem = psutil.virtual_memory().total
self.__init_apps()
def _partial_face_blend(self, original_frame, swapped_frame, face):
h_frame, w_frame = original_frame.shape[:2]
x1, y1, x2, y2 = map(int, face.bbox)
x1 = max(0, min(x1, w_frame-1))
y1 = max(0, min(y1, h_frame-1))
x2 = max(0, min(x2, w_frame))
y2 = max(0, min(y2, h_frame))
if x2 <= x1 or y2 <= y1:
print(f"Invalid bbox: {x1},{y1},{x2},{y2}")
return swapped_frame
w = x2 - x1
h = y2 - y1
cutoff = int(h * (1.0 - self.blend_height_ratio))
swap_crop = swapped_frame[y1:y2, x1:x2].copy()
orig_crop = original_frame[y1:y2, x1:x2].copy()
mask = np.ones((h, w, 3), dtype=np.float32)
transition = 40
if cutoff < h:
blend_start = max(cutoff - transition // 2, 0)
blend_end = min(cutoff + transition // 2, h)
if blend_end > blend_start:
alpha = np.linspace(1.0, 0.0, blend_end - blend_start)[:, np.newaxis, np.newaxis]
mask[blend_start:blend_end, :, :] = alpha
mask[blend_end:, :, :] = 0.0
blended_crop = (swap_crop.astype(np.float32) * mask + orig_crop.astype(np.float32) * (1.0 - mask)).astype(np.uint8)
blended_frame = swapped_frame.copy()
blended_frame[y1:y2, x1:x2] = blended_crop
return blended_frame
def __download_with_progress(self, url, output_path):
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
block_size = 1024
t = tqdm(total=total_size, unit='iB', unit_scale=True, desc=f"Downloading {os.path.basename(output_path)}")
with open(output_path, 'wb') as f:
for data in response.iter_content(block_size):
t.update(len(data))
f.write(data)
t.close()
if total_size != 0 and t.n != total_size:
raise Exception("ERROR, something went wrong downloading the model!")
def __check_providers(self):
available_providers = rt.get_available_providers()
if self.force_cpu:
self.providers = ['CPUExecutionProvider']
else:
# Prefer faster execution providers in order
self.providers = []
for p in ['CoreMLExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']:
if p in available_providers:
self.providers.append(p)
rt.set_default_logger_severity(4)
self.sess_options = rt.SessionOptions()
self.sess_options.execution_mode = rt.ExecutionMode.ORT_PARALLEL
self.sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
test_model = os.path.expanduser("~/.insightface/models/buffalo_l/det_10g.onnx")
try:
test_session = rt.InferenceSession(test_model, self.sess_options, providers=self.providers)
active_provider = test_session.get_providers()[0]
except Exception as e:
print(f"[ERROR] Failed to create test session: {e}")
active_provider = 'CPUExecutionProvider'
if active_provider == 'CUDAExecutionProvider':
self.mode = RefacerMode.CUDA
self.use_num_cpus = 2
self.sess_options.intra_op_num_threads = 1
elif active_provider == 'CoreMLExecutionProvider':
self.mode = RefacerMode.COREML
self.use_num_cpus = max(mp.cpu_count() - 1, 1)
self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 2)
elif self.colab_performance:
self.mode = RefacerMode.TENSORRT
self.use_num_cpus = max(mp.cpu_count() - 1, 1)
self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 2)
else:
self.mode = RefacerMode.CPU
self.use_num_cpus = max(mp.cpu_count() - 1, 1)
self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 2)
print(f"Available providers: {available_providers}")
print(f"Using providers: {self.providers}")
print(f"Active provider: {active_provider}")
print(f"Mode: {self.mode}")
def __init_apps(self):
assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
model_path = os.path.join(assets_dir, 'det_10g.onnx')
sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
print(f"Face Detector providers: {sess_face.get_providers()}")
self.face_detector = SCRFD(model_path, sess_face)
self.face_detector.prepare(0, input_size=(640, 640))
model_path = os.path.join(assets_dir, 'w600k_r50.onnx')
sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
print(f"Face Recognizer providers: {sess_rec.get_providers()}")
self.rec_app = ArcFaceONNX(model_path, sess_rec)
self.rec_app.prepare(0)
model_dir = os.path.join('weights', 'inswapper')
os.makedirs(model_dir, exist_ok=True)
model_path = os.path.join(model_dir, 'inswapper_128.onnx')
if not os.path.exists(model_path):
print(f"Model {model_path} not found. Downloading from HuggingFace...")
url = "https://huggingface.co/ezioruan/inswapper_128.onnx/resolve/main/inswapper_128.onnx"
try:
self.__download_with_progress(url, model_path)
print(f"Downloaded {model_path}")
except Exception as e:
raise RuntimeError(f"Failed to download {model_path}. Error: {e}")
sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
print(f"Face Swapper providers: {sess_swap.get_providers()}")
self.face_swapper = INSwapper(model_path, sess_swap)
def prepare_faces(self, faces, disable_similarity=False, multiple_faces_mode=False):
self.replacement_faces = []
self.disable_similarity = disable_similarity
self.multiple_faces_mode = multiple_faces_mode
for face in faces:
if "destination" not in face or face["destination"] is None:
print("Skipping face config: No destination face provided.")
continue
_faces = self.__get_faces(face['destination'], max_num=1)
if len(_faces) < 1:
raise Exception('No face detected on "Destination face" image')
if multiple_faces_mode:
self.replacement_faces.append((None, _faces[0], 0.0))
else:
if "origin" in face and face["origin"] is not None and not disable_similarity:
face_threshold = face['threshold']
bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
if len(kpss1) < 1:
raise Exception('No face detected on "Face to replace" image')
feat_original = self.rec_app.get(face['origin'], kpss1[0])
else:
face_threshold = 0
self.first_face = True
feat_original = None
self.replacement_faces.append((feat_original, _faces[0], face_threshold))
def __get_faces(self, frame, max_num=0):
bboxes, kpss = self.face_detector.detect(frame, max_num=max_num, metric='default')
if bboxes.shape[0] == 0:
return []
ret = []
for i in range(bboxes.shape[0]):
bbox = bboxes[i, 0:4]
det_score = bboxes[i, 4]
kps = kpss[i] if kpss is not None else None
face = Face(bbox=bbox, kps=kps, det_score=det_score)
face.embedding = self.rec_app.get(frame, kps)
ret.append(face)
return ret
def process_first_face(self, frame):
faces = self.__get_faces(frame, max_num=0)
if not faces:
return frame
if self.disable_similarity:
for face in faces:
swapped = self.face_swapper.get(frame, face, self.replacement_faces[0][1], paste_back=True)
if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
self.blend_height_ratio = self.partial_reface_ratio
frame = self._partial_face_blend(frame, swapped, face)
else:
frame = swapped
return frame
def process_faces(self, frame):
faces = self.__get_faces(frame, max_num=0)
if not faces:
return frame
faces = sorted(faces, key=lambda face: face.bbox[0])
if self.multiple_faces_mode:
for idx, face in enumerate(faces):
if idx >= len(self.replacement_faces):
break
swapped = self.face_swapper.get(frame, face, self.replacement_faces[idx][1], paste_back=True)
if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
self.blend_height_ratio = self.partial_reface_ratio
frame = self._partial_face_blend(frame, swapped, face)
else:
frame = swapped
elif self.disable_similarity:
for face in faces:
swapped = self.face_swapper.get(frame, face, self.replacement_faces[0][1], paste_back=True)
if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
self.blend_height_ratio = self.partial_reface_ratio
frame = self._partial_face_blend(frame, swapped, face)
else:
frame = swapped
else:
for rep_face in self.replacement_faces:
for i in range(len(faces) - 1, -1, -1):
sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
if sim >= rep_face[2]:
swapped = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
self.blend_height_ratio = self.partial_reface_ratio
frame = self._partial_face_blend(frame, swapped, faces[i])
else:
frame = swapped
del faces[i]
break
return frame
def reface_group(self, faces, frames, output):
with ThreadPoolExecutor(max_workers=self.use_num_cpus) as executor:
if self.first_face:
results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames), desc="Processing frames"))
else:
results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames), desc="Processing frames"))
for result in results:
output.write(result)
def __check_video_has_audio(self, video_path):
self.video_has_audio = False
probe = ffmpeg.probe(video_path)
audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
if audio_stream is not None:
self.video_has_audio = True
def reface(self, video_path, faces, preview=False, disable_similarity=False, multiple_faces_mode=False, partial_reface_ratio=0.0):
original_name = osp.splitext(osp.basename(video_path))[0]
timestamp = str(int(time.time()))
filename = f"{original_name}_preview.mp4" if preview else f"{original_name}_{timestamp}.mp4"
self.__check_video_has_audio(video_path)
if preview:
os.makedirs("output/preview", exist_ok=True)
output_video_path = os.path.join('output', 'preview', filename)
else:
os.makedirs("output", exist_ok=True)
output_video_path = os.path.join('output', filename)
self.prepare_faces(faces, disable_similarity=disable_similarity, multiple_faces_mode=multiple_faces_mode)
self.first_face = False if multiple_faces_mode else (faces[0].get("origin") is None or disable_similarity)
self.partial_reface_ratio = partial_reface_ratio
cap = cv2.VideoCapture(video_path, cv2.CAP_FFMPEG)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
frames = []
frame_index = 0
skip_rate = 10 if preview else 1
with tqdm(total=total_frames, desc="Extracting frames") as pbar:
while cap.isOpened():
flag, frame = cap.read()
if not flag:
break
if frame_index % skip_rate == 0:
frames.append(frame)
if len(frames) > 300:
self.reface_group(faces, frames, output)
frames = []
gc.collect()
frame_index += 1
pbar.update()
cap.release()
if frames:
self.reface_group(faces, frames, output)
output.release()
converted_path = self.__convert_video(video_path, output_video_path, preview=preview)
if video_path.lower().endswith(".gif"):
if preview:
gif_output_path = os.path.join("output", "preview", os.path.basename(converted_path).replace(".mp4", ".gif"))
else:
gif_output_path = os.path.join("output", "gifs", os.path.basename(converted_path).replace(".mp4", ".gif"))
self.__generate_gif(converted_path, gif_output_path)
return converted_path, gif_output_path
return converted_path, None
def __generate_gif(self, video_path, gif_output_path):
os.makedirs(os.path.dirname(gif_output_path), exist_ok=True)
print(f"Generating GIF at {gif_output_path}")
(
ffmpeg
.input(video_path)
.output(gif_output_path, vf='fps=10,scale=512:-1:flags=lanczos', loop=0)
.overwrite_output()
.run(quiet=True)
)
def __convert_video(self, video_path, output_video_path, preview=False):
if self.video_has_audio and not preview:
new_path = output_video_path + str(random.randint(0, 999)) + "_c.mp4"
in1 = ffmpeg.input(output_video_path)
in2 = ffmpeg.input(video_path)
out = ffmpeg.output(in1.video, in2.audio, new_path, video_bitrate=self.ffmpeg_video_bitrate, vcodec=self.ffmpeg_video_encoder)
out.run(overwrite_output=True, quiet=True)
else:
new_path = output_video_path
print(f"Refaced video saved at: {os.path.abspath(new_path)}")
return new_path
def reface_image(self, image_path, faces, disable_similarity=False, multiple_faces_mode=False, partial_reface_ratio=0.0):
self.prepare_faces(faces, disable_similarity=disable_similarity, multiple_faces_mode=multiple_faces_mode)
self.first_face = False if multiple_faces_mode else (faces[0].get("origin") is None or disable_similarity)
self.partial_reface_ratio = partial_reface_ratio
ext = osp.splitext(image_path)[1].lower()
os.makedirs("output", exist_ok=True)
original_name = osp.splitext(osp.basename(image_path))[0]
timestamp = str(int(time.time()))
if ext in ['.tif', '.tiff']:
pil_img = Image.open(image_path)
frames = []
page_count = 0
try:
while True:
pil_img.seek(page_count)
page_count += 1
except EOFError:
pass
pil_img = Image.open(image_path)
with tqdm(total=page_count, desc="Processing TIFF pages") as pbar:
for page in range(page_count):
pil_img.seek(page)
bgr_image = cv2.cvtColor(np.array(pil_img.convert('RGB')), cv2.COLOR_RGB2BGR)
refaced_bgr = self.process_first_face(bgr_image.copy()) if self.first_face else self.process_faces(bgr_image.copy())
enhanced_bgr = enhance_image_memory(refaced_bgr)
enhanced_rgb = cv2.cvtColor(enhanced_bgr, cv2.COLOR_BGR2RGB)
enhanced_pil = Image.fromarray(enhanced_rgb)
frames.append(enhanced_pil)
pbar.update(1)
output_path = os.path.join("output", f"{original_name}_{timestamp}.tif")
frames[0].save(output_path, save_all=True, append_images=frames[1:], compression="tiff_deflate")
print(f"Saved multipage refaced TIFF to {output_path}")
return output_path
else:
bgr_image = cv2.imread(image_path)
if bgr_image is None:
raise ValueError("Failed to read input image")
refaced_bgr = self.process_first_face(bgr_image.copy()) if self.first_face else self.process_faces(bgr_image.copy())
refaced_rgb = cv2.cvtColor(refaced_bgr, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(refaced_rgb)
filename = f"{original_name}_{timestamp}.jpg"
output_path = os.path.join("output", filename)
pil_img.save(output_path, format='JPEG', quality=100, subsampling=0)
output_path = enhance_image(output_path)
print(f"Saved refaced image to {output_path}")
return output_path
def extract_faces_from_image(self, image_path, max_faces=5):
frame = cv2.imread(image_path)
if frame is None:
raise ValueError("Failed to read input image for face extraction.")
faces = self.__get_faces(frame, max_num=max_faces)
cropped_faces = []
for face in faces:
x1, y1, x2, y2 = map(int, face.bbox)
x1 = max(x1, 0)
y1 = max(y1, 0)
x2 = min(x2, frame.shape[1])
y2 = min(y2, frame.shape[0])
cropped = frame[y1:y2, x1:x2]
pil_img = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
temp_file = tempfile.NamedTemporaryFile(delete=False, dir="./tmp", suffix=".png")
pil_img.save(temp_file.name)
cropped_faces.append(temp_file.name)
if len(cropped_faces) >= max_faces:
break
return cropped_faces
def __try_ffmpeg_encoder(self, vcodec):
command = ['ffmpeg', '-y', '-f', 'lavfi', '-i', 'testsrc=duration=1:size=1280x720:rate=30', '-vcodec', vcodec, 'testsrc.mp4']
try:
subprocess.run(command, check=True, capture_output=True).stderr
except subprocess.CalledProcessError:
return False
return True
def __check_encoders(self):
self.ffmpeg_video_encoder = 'libx264'
self.ffmpeg_video_bitrate = '0'
pattern = r"encoders: ([a-zA-Z0-9_]+(?: [a-zA-Z0-9_]+)*)"
command = ['ffmpeg', '-codecs', '--list-encoders']
commandout = subprocess.run(command, check=True, capture_output=True).stdout
result = commandout.decode('utf-8').split('\n')
for r in result:
if "264" in r:
encoders = re.search(pattern, r)
if encoders:
for v_c in Refacer.VIDEO_CODECS:
for v_k in encoders.group(1).split(' '):
if v_c == v_k and self.__try_ffmpeg_encoder(v_k):
self.ffmpeg_video_encoder = v_k
self.ffmpeg_video_bitrate = Refacer.VIDEO_CODECS[v_k]
return
VIDEO_CODECS = {
'h264_videotoolbox': '0',
'h264_nvenc': '0',
'libx264': '0'
}