BoundrAI / app.py
frimelle's picture
frimelle HF Staff
add logging
f763ade
raw
history blame
2.14 kB
import gradio as gr
from huggingface_hub import InferenceClient
from datetime import datetime
import os
import uuid
# ---- System Prompt ----
with open("system_prompt.txt", "r") as f:
SYSTEM_PROMPT = f.read()
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
client = InferenceClient(MODEL_NAME)
# ---- Setup logging ----
LOG_DIR = "chat_logs"
os.makedirs(LOG_DIR, exist_ok=True)
session_id = str(uuid.uuid4())
def log_chat(session_id, user_msg, bot_msg):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_path = os.path.join(LOG_DIR, f"{session_id}.txt")
with open(log_path, "a", encoding="utf-8") as f:
f.write(f"[{timestamp}] User: {user_msg}\n")
f.write(f"[{timestamp}] Bot: {bot_msg}\n\n")
# ---- Respond Function with Logging ----
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content
if token:
response += token
yield response
# Save full message after stream ends
log_chat(session_id, message, response)
# ---- Gradio Interface ----
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value=SYSTEM_PROMPT, label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
title="BoundrAI"
)
if __name__ == "__main__":
demo.launch()