|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from datetime import datetime |
|
import os |
|
import uuid |
|
|
|
|
|
with open("system_prompt.txt", "r") as f: |
|
SYSTEM_PROMPT = f.read() |
|
|
|
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" |
|
client = InferenceClient(MODEL_NAME) |
|
|
|
|
|
LOG_DIR = "chat_logs" |
|
os.makedirs(LOG_DIR, exist_ok=True) |
|
session_id = str(uuid.uuid4()) |
|
|
|
def log_chat(session_id, user_msg, bot_msg): |
|
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
log_path = os.path.join(LOG_DIR, f"{session_id}.txt") |
|
with open(log_path, "a", encoding="utf-8") as f: |
|
f.write(f"[{timestamp}] User: {user_msg}\n") |
|
f.write(f"[{timestamp}] Bot: {bot_msg}\n\n") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for chunk in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = chunk.choices[0].delta.content |
|
if token: |
|
response += token |
|
yield response |
|
|
|
|
|
log_chat(session_id, message, response) |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value=SYSTEM_PROMPT, label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
title="BoundrAI" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |