Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
import torch | |
import torch.utils.data as data | |
import torchvision.transforms as transforms | |
from PIL import Image | |
from PIL import ImageDraw | |
import os.path as osp | |
import numpy as np | |
import json | |
class CPDataset(data.Dataset): | |
"""Dataset for CP-VTON+. | |
""" | |
def __init__(self, opt): | |
super(CPDataset, self).__init__() | |
# base setting | |
self.opt = opt | |
self.root = opt.dataroot | |
self.datamode = opt.datamode # train or test or self-defined | |
self.stage = opt.stage # GMM or TOM | |
self.data_list = opt.data_list | |
self.fine_height = opt.fine_height | |
self.fine_width = opt.fine_width | |
self.radius = opt.radius | |
self.data_path = osp.join(opt.dataroot, opt.datamode) | |
self.transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
# load data list | |
im_names = [] | |
c_names = [] | |
with open(osp.join(opt.dataroot, opt.data_list), 'r') as f: | |
for line in f.readlines(): | |
im_name, c_name = line.strip().split() | |
im_names.append(im_name) | |
c_names.append(c_name) | |
self.im_names = im_names | |
self.c_names = c_names | |
def name(self): | |
return "CPDataset" | |
def __getitem__(self, index): | |
c_name = self.c_names[index] | |
im_name = self.im_names[index] | |
if self.stage == 'GMM': | |
c = Image.open(osp.join(self.data_path, 'cloth', c_name)) | |
cm = Image.open(osp.join(self.data_path, 'cloth-mask', c_name)).convert('L') | |
else: | |
c = Image.open(osp.join(self.data_path, 'warp-cloth', im_name)) # c_name, if that is used when saved | |
cm = Image.open(osp.join(self.data_path, 'warp-mask', im_name)).convert('L') # c_name, if that is used when saved | |
c = self.transform(c) # [-1,1] | |
cm_array = np.array(cm) | |
cm_array = (cm_array >= 128).astype(np.float32) | |
cm = torch.from_numpy(cm_array) # [0,1] | |
cm.unsqueeze_(0) | |
# person image | |
im = Image.open(osp.join(self.data_path, 'image', im_name)) | |
im = self.transform(im) # [-1,1] | |
""" | |
LIP labels | |
[(0, 0, 0), # 0=Background | |
(128, 0, 0), # 1=Hat | |
(255, 0, 0), # 2=Hair | |
(0, 85, 0), # 3=Glove | |
(170, 0, 51), # 4=SunGlasses | |
(255, 85, 0), # 5=UpperClothes | |
(0, 0, 85), # 6=Dress | |
(0, 119, 221), # 7=Coat | |
(85, 85, 0), # 8=Socks | |
(0, 85, 85), # 9=Pants | |
(85, 51, 0), # 10=Jumpsuits | |
(52, 86, 128), # 11=Scarf | |
(0, 128, 0), # 12=Skirt | |
(0, 0, 255), # 13=Face | |
(51, 170, 221), # 14=LeftArm | |
(0, 255, 255), # 15=RightArm | |
(85, 255, 170), # 16=LeftLeg | |
(170, 255, 85), # 17=RightLeg | |
(255, 255, 0), # 18=LeftShoe | |
(255, 170, 0) # 19=RightShoe | |
(170, 170, 50) # 20=Skin/Neck/Chest (Newly added after running dataset_neck_skin_correction.py) | |
] | |
""" | |
# load parsing image | |
parse_name = im_name.replace('.jpg', '.png') | |
im_parse = Image.open( | |
# osp.join(self.data_path, 'image-parse', parse_name)).convert('L') | |
osp.join(self.data_path, 'image-parse-new', parse_name)).convert('L') # updated new segmentation | |
parse_array = np.array(im_parse) | |
im_mask = Image.open( | |
osp.join(self.data_path, 'image-mask', parse_name)).convert('L') | |
mask_array = np.array(im_mask) | |
# parse_shape = (parse_array > 0).astype(np.float32) # CP-VTON body shape | |
# Get shape from body mask (CP-VTON+) | |
parse_shape = (mask_array > 0).astype(np.float32) | |
if self.stage == 'GMM': | |
parse_head = (parse_array == 1).astype(np.float32) + \ | |
(parse_array == 4).astype(np.float32) + \ | |
(parse_array == 13).astype( | |
np.float32) # CP-VTON+ GMM input (reserved regions) | |
else: | |
parse_head = (parse_array == 1).astype(np.float32) + \ | |
(parse_array == 2).astype(np.float32) + \ | |
(parse_array == 4).astype(np.float32) + \ | |
(parse_array == 9).astype(np.float32) + \ | |
(parse_array == 12).astype(np.float32) + \ | |
(parse_array == 13).astype(np.float32) + \ | |
(parse_array == 16).astype(np.float32) + \ | |
(parse_array == 17).astype( | |
np.float32) # CP-VTON+ TOM input (reserved regions) | |
parse_cloth = (parse_array == 5).astype(np.float32) + \ | |
(parse_array == 6).astype(np.float32) + \ | |
(parse_array == 7).astype(np.float32) # upper-clothes labels | |
# shape downsample | |
parse_shape_ori = Image.fromarray((parse_shape*255).astype(np.uint8)) | |
parse_shape = parse_shape_ori.resize( | |
(self.fine_width//16, self.fine_height//16), Image.BILINEAR) | |
parse_shape = parse_shape.resize( | |
(self.fine_width, self.fine_height), Image.BILINEAR) | |
parse_shape_ori = parse_shape_ori.resize( | |
(self.fine_width, self.fine_height), Image.BILINEAR) | |
shape_ori = self.transform(parse_shape_ori) # [-1,1] | |
shape = self.transform(parse_shape) # [-1,1] | |
phead = torch.from_numpy(parse_head) # [0,1] | |
# phand = torch.from_numpy(parse_hand) # [0,1] | |
pcm = torch.from_numpy(parse_cloth) # [0,1] | |
# upper cloth | |
im_c = im * pcm + (1 - pcm) # [-1,1], fill 1 for other parts | |
im_h = im * phead - (1 - phead) # [-1,1], fill -1 for other parts | |
# load pose points | |
pose_name = im_name.replace('.jpg', '_keypoints.json') | |
with open(osp.join(self.data_path, 'pose', pose_name), 'r') as f: | |
pose_label = json.load(f) | |
pose_data = pose_label['people'][0]['pose_keypoints'] | |
pose_data = np.array(pose_data) | |
pose_data = pose_data.reshape((-1, 3)) | |
point_num = pose_data.shape[0] | |
pose_map = torch.zeros(point_num, self.fine_height, self.fine_width) | |
r = self.radius | |
im_pose = Image.new('L', (self.fine_width, self.fine_height)) | |
pose_draw = ImageDraw.Draw(im_pose) | |
for i in range(point_num): | |
one_map = Image.new('L', (self.fine_width, self.fine_height)) | |
draw = ImageDraw.Draw(one_map) | |
pointx = pose_data[i, 0] | |
pointy = pose_data[i, 1] | |
if pointx > 1 and pointy > 1: | |
draw.rectangle((pointx-r, pointy-r, pointx + | |
r, pointy+r), 'white', 'white') | |
pose_draw.rectangle( | |
(pointx-r, pointy-r, pointx+r, pointy+r), 'white', 'white') | |
one_map = self.transform(one_map) | |
pose_map[i] = one_map[0] | |
# just for visualization | |
im_pose = self.transform(im_pose) | |
# cloth-agnostic representation | |
agnostic = torch.cat([shape, im_h, pose_map], 0) | |
if self.stage == 'GMM': | |
im_g = Image.open('grid.png') | |
im_g = self.transform(im_g) | |
else: | |
im_g = '' | |
pcm.unsqueeze_(0) # CP-VTON+ | |
result = { | |
'c_name': c_name, # for visualization | |
'im_name': im_name, # for visualization or ground truth | |
'cloth': c, # for input | |
'cloth_mask': cm, # for input | |
'image': im, # for visualization | |
'agnostic': agnostic, # for input | |
'parse_cloth': im_c, # for ground truth | |
'shape': shape, # for visualization | |
'head': im_h, # for visualization | |
'pose_image': im_pose, # for visualization | |
'grid_image': im_g, # for visualization | |
'parse_cloth_mask': pcm, # for CP-VTON+, TOM input | |
'shape_ori': shape_ori, # original body shape without resize | |
} | |
return result | |
def __len__(self): | |
return len(self.im_names) | |
class CPDataLoader(object): | |
def __init__(self, opt, dataset): | |
super(CPDataLoader, self).__init__() | |
if opt.shuffle: | |
train_sampler = torch.utils.data.sampler.RandomSampler(dataset) | |
else: | |
train_sampler = None | |
self.data_loader = torch.utils.data.DataLoader( | |
dataset, batch_size=opt.batch_size, shuffle=( | |
train_sampler is None), | |
num_workers=opt.workers, pin_memory=True, sampler=train_sampler) | |
self.dataset = dataset | |
self.data_iter = self.data_loader.__iter__() | |
def next_batch(self): | |
try: | |
batch = self.data_iter.__next__() | |
except StopIteration: | |
self.data_iter = self.data_loader.__iter__() | |
batch = self.data_iter.__next__() | |
return batch | |
if __name__ == "__main__": | |
print("Check the dataset for geometric matching module!") | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--dataroot", default="data") | |
parser.add_argument("--datamode", default="train") | |
parser.add_argument("--stage", default="GMM") | |
parser.add_argument("--data_list", default="train_pairs.txt") | |
parser.add_argument("--fine_width", type=int, default=192) | |
parser.add_argument("--fine_height", type=int, default=256) | |
parser.add_argument("--radius", type=int, default=3) | |
parser.add_argument("--shuffle", action='store_true', | |
help='shuffle input data') | |
parser.add_argument('-b', '--batch-size', type=int, default=4) | |
parser.add_argument('-j', '--workers', type=int, default=1) | |
opt = parser.parse_args() | |
dataset = CPDataset(opt) | |
data_loader = CPDataLoader(opt, dataset) | |
print('Size of the dataset: %05d, dataloader: %04d' | |
% (len(dataset), len(data_loader.data_loader))) | |
first_item = dataset.__getitem__(0) | |
first_batch = data_loader.next_batch() | |
from IPython import embed | |
embed() | |