Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
device = torch.device("cpu") | |
model_id = "TheBloke/Mistral-7B-Instruct-v0.1" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id).to(device) | |
def generate(summaries): | |
context = " ".join([p['summary'] for p in summaries]) | |
prompt = f"Based on these paper summaries:\n{context}\n\nSuggest a new AI research hypothesis:" | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
outputs = model.generate(**inputs, max_new_tokens=100) | |
text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return text[len(prompt):].strip() |