eurekacrew / agents /scout.py
gaur3009's picture
Create agents/scout.py
79c9666 verified
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer, util
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cpu")
model_id = "TheBloke/Mistral-7B-Instruct-v0.1" # replace if needed
tokenizer = AutoTokenizer.from_pretrained(model_id)
llm = AutoModelForCausalLM.from_pretrained(model_id).to(device)
embedder = SentenceTransformer('all-MiniLM-L6-v2')
def search_and_summarize(query, max_papers=5):
url = "https://arxiv.org/rss/cs.AI"
res = requests.get(url)
soup = BeautifulSoup(res.text, 'xml')
items = soup.find_all('item')
papers = []
for item in items:
title = item.title.text
abstract = item.description.text
link = item.link.text
papers.append({'title': title, 'abstract': abstract, 'link': link})
# embed & find top matches
query_emb = embedder.encode(query)
paper_embs = embedder.encode([p['abstract'] for p in papers])
sims = util.cos_sim(query_emb, paper_embs)[0]
top_idx = sims.argsort(descending=True)[:max_papers]
results = []
for idx in top_idx:
paper = papers[idx]
context = f"Title: {paper['title']}\nAbstract: {paper['abstract']}"
prompt = f"{context}\n\nExplain this paper in simple terms for an AI researcher:"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = llm.generate(**inputs, max_new_tokens=200)
explanation = tokenizer.decode(outputs[0], skip_special_tokens=True)
explanation = explanation[len(prompt):].strip()
results.append({
'title': paper['title'],
'summary': explanation,
'link': paper['link']
})
return results