Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from simple_salesforce import Salesforce | |
import os | |
from datetime import datetime | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Salesforce credentials (use environment variables for security) | |
SF_USERNAME = os.getenv('Ai@Coach.com') | |
SF_PASSWORD = os.getenv('Teja90325@') | |
SF_SECURITY_TOKEN = os.getenv('clceSdBgQ30Rx9BSC66gAcRx') | |
SF_DOMAIN = os.getenv('SF_DOMAIN', 'login') # Default to 'login' if not set | |
HUGGINGFACE_API_KEY = os.getenv('HUGGINGFACE_API_KEY') | |
# Validate that environment variables are set | |
if not all([SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, HUGGINGFACE_API_KEY]): | |
logger.error("Missing required environment variables (SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, or HUGGINGFACE_API_KEY)") | |
raise ValueError("Missing required environment variables. Please set SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, and HUGGINGFACE_API_KEY.") | |
# Initialize Salesforce connection | |
try: | |
sf = Salesforce( | |
username=SF_USERNAME, | |
password=SF_PASSWORD, | |
security_token=SF_SECURITY_TOKEN, | |
domain=SF_DOMAIN | |
) | |
logger.info("Successfully connected to Salesforce") | |
except Exception as e: | |
logger.error(f"Failed to connect to Salesforce: {e}") | |
sf = None | |
# Initialize model and tokenizer | |
model_name = "distilgpt2" | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="./model_cache") | |
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="./model_cache") | |
except Exception as e: | |
logger.error(f"Error loading model: {e}") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Set pad_token to eos_token if not already set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
model.config.pad_token_id = tokenizer.eos_token_id | |
# Simplified prompt template | |
PROMPT_TEMPLATE = """Role: {role} | |
Project: {project_id} | |
Milestones: | |
- {milestones_list} | |
Reflection: {reflection} | |
Generate: | |
Checklist: | |
- {milestones_list} | |
Suggestions: | |
{suggestions_list} | |
Quote: | |
{your_motivational_quote}""" | |
def fetch_salesforce_data_for_role(role): | |
"""Fetch Project__c records from Salesforce based on the selected role.""" | |
if sf is None: | |
logger.error("Salesforce connection not initialized") | |
return None, None, None, "Error: Salesforce connection not initialized" | |
try: | |
# Query Project__c records where the Supervisor's role matches the selected role | |
query = f""" | |
SELECT Id, Name, Project_Name__c, Milestones__c, Weather_Log__c, | |
Supervisor__r.Role__c, Supervisor__r.Name, Supervisor__c | |
FROM Project__c | |
WHERE Supervisor__r.Role__c = '{role}' AND Milestones__c != null | |
LIMIT 1 | |
""" | |
projects = sf.query(query)['records'] | |
if not projects: | |
logger.info(f"No projects found for role: {role}") | |
return None, None, None, f"No projects found for role: {role}" | |
project = projects[0] # Take the first project | |
project_id = project['Name'] | |
milestones = project['Milestones__c'] or 'No milestones' | |
reflection = f"Weather: {project['Weather_Log__c'] or 'Sunny, 25°C'}" | |
logger.info(f"Fetched project {project_id} for role {role}") | |
return project, project_id, milestones, reflection | |
except Exception as e: | |
logger.error(f"Error fetching Salesforce data: {e}") | |
return None, None, None, f"Error fetching Salesforce data: {e}" | |
def generate_outputs(role, project_id, milestones, reflection): | |
"""Generate checklist, suggestions, and quote using distilgpt2.""" | |
# Input validation | |
if not all([role, project_id, milestones, reflection]): | |
logger.error("All fields are required") | |
return "Error: All fields are required.", "", "" | |
# Process milestones | |
milestones_list = "\n- ".join([m.strip() for m in milestones.split(",") if m.strip()]) | |
if not milestones_list: | |
logger.error("At least one valid milestone is required") | |
return "Error: At least one valid milestone is required.", "", "" | |
# Generate suggestions based on reflection | |
suggestions_list = [] | |
reflection_lower = reflection.lower() | |
if "delays" in reflection_lower: | |
suggestions_list.extend(["Adjust timelines for delays.", "Communicate with stakeholders."]) | |
if "weather" in reflection_lower: | |
suggestions_list.extend(["Ensure rain gear availability.", "Monitor weather updates."]) | |
if "equipment" in reflection_lower: | |
suggestions_list.extend(["Inspect equipment.", "Schedule maintenance."]) | |
suggestions_list = "\n- ".join(suggestions_list) if suggestions_list else "No specific suggestions." | |
# Format prompt | |
prompt = PROMPT_TEMPLATE.format( | |
role=role, | |
project_id=project_id, | |
milestones_list=milestones_list.replace("\n- ", "\n- "), | |
reflection=reflection, | |
suggestions_list=suggestions_list, | |
your_motivational_quote="Your motivational quote here" | |
) | |
# Tokenize input | |
try: | |
inputs = tokenizer( | |
prompt, | |
return_tensors="pt", | |
max_length=512, | |
truncation=True, | |
padding=True | |
) | |
except Exception as e: | |
logger.error(f"Error in tokenization: {e}") | |
return f"Error in tokenization: {e}", "", "" | |
# Generate output | |
try: | |
with torch.no_grad(): | |
outputs = model.generate( | |
input_ids=inputs['input_ids'], | |
attention_mask=inputs['attention_mask'], | |
max_length=600, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
top_k=50, | |
top_p=0.95, | |
temperature=0.7, | |
pad_token_id=tokenizer.eos_token_id, | |
do_sample=True | |
) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
except Exception as e: | |
logger.error(f"Error in generation: {e}") | |
return f"Error in generation: {e}", "", "" | |
# Extract sections | |
checklist = suggestions = quote = "Not generated." | |
try: | |
if "Checklist:" in generated_text: | |
checklist_start = generated_text.find("Checklist:") + 10 | |
suggestions_start = generated_text.find("Suggestions:", checklist_start) | |
if suggestions_start == -1: | |
suggestions_start = len(generated_text) | |
checklist = generated_text[checklist_start:suggestions_start].strip() | |
if "Suggestions:" in generated_text: | |
suggestions_start = generated_text.find("Suggestions:") + 12 | |
quote_start = generated_text.find("Quote:", suggestions_start) | |
if quote_start == -1: | |
quote_start = len(generated_text) | |
suggestions = generated_text[suggestions_start:quote_start].strip() | |
if "Quote:" in generated_text: | |
quote_start = generated_text.find("Quote:") + 7 | |
quote = generated_text[quote_start:].strip() | |
except Exception as e: | |
logger.error(f"Error parsing output: {e}") | |
return f"Error parsing output: {e}", "", "" | |
return checklist, suggestions, quote | |
def store_in_salesforce(project, role, project_id, milestones, reflection, checklist, suggestions, quote): | |
"""Store the generated outputs in Salesforce Supervisor_AI_Coaching__c.""" | |
if sf is None: | |
logger.error("Salesforce connection not initialized") | |
return "Error: Salesforce connection not initialized" | |
try: | |
# Update or create Supervisor_AI_Coaching__c record | |
coaching_query = f""" | |
SELECT Id | |
FROM Supervisor_AI_Coaching__c | |
WHERE Project_ID__c = '{project['Id']}' | |
LIMIT 1 | |
""" | |
coaching_records = sf.query(coaching_query)['records'] | |
coaching_data = { | |
'Project_ID__c': project['Id'], | |
'Supervisor_ID__c': project['Supervisor__c'], | |
'Daily_Checklist__c': checklist, | |
'Suggested_Tips__c': suggestions, | |
'Reflection_Log__c': reflection, | |
'Last_Refresh_Date__c': datetime.utcnow().isoformat(), | |
'Engagement_Score__c': 50 if checklist != 'Not generated.' else 0, | |
'KPI_Flag__c': 'delay' in suggestions.lower() or 'issue' in suggestions.lower() | |
} | |
if coaching_records: | |
sf.Supervisor_AI_Coaching__c.update(coaching_records[0]['Id'], coaching_data) | |
logger.info(f"Updated Supervisor_AI_Coaching__c for Project {project_id}") | |
else: | |
sf.Supervisor_AI_Coaching__c.create(coaching_data) | |
logger.info(f"Created Supervisor_AI_Coaching__c for Project {project_id}") | |
return f"Successfully stored data for Project {project_id} in Salesforce" | |
except Exception as e: | |
logger.error(f"Error storing data in Salesforce: {e}") | |
return f"Error storing data in Salesforce: {e}" | |
def fetch_and_process_salesforce_data(): | |
"""Fetch Project__c records from Salesforce and generate AI outputs.""" | |
if sf is None: | |
logger.error("Salesforce connection not initialized") | |
return "Error: Salesforce connection not initialized" | |
try: | |
# Query Project__c records | |
query = """ | |
SELECT Id, Name, Project_Name__c, Milestones__c, Weather_Log__c, | |
Supervisor__r.Role__c, Supervisor__r.Name, Supervisor__c | |
FROM Project__c | |
WHERE Milestones__c != null | |
LIMIT 10 | |
""" | |
projects = sf.query(query)['records'] | |
logger.info(f"Fetched {len(projects)} Project__c records") | |
for project in projects: | |
role = project['Supervisor__r']['Role__c'] if project['Supervisor__r'] is not None else 'Supervisor' | |
project_id = project['Name'] | |
milestones = project['Milestones__c'] or 'No milestones' | |
reflection = f"Weather: {project['Weather_Log__c'] or 'Sunny, 25°C'}" | |
# Generate AI outputs | |
checklist, suggestions, quote = generate_outputs(role, project_id, milestones, reflection) | |
logger.info(f"Generated outputs for Project {project_id}") | |
# Store in Salesforce | |
store_in_salesforce(project, role, project_id, milestones, reflection, checklist, suggestions, quote) | |
return f"Processed {len(projects)} projects successfully" | |
except Exception as e: | |
logger.error(f"Error processing Salesforce data: {e}") | |
return f"Error processing Salesforce data: {e}" | |
def on_role_change(role): | |
"""Handle role selection change, fetch Salesforce data, generate outputs, and store in Salesforce.""" | |
# Fetch data from Salesforce based on the selected role | |
project, project_id, milestones, reflection = fetch_salesforce_data_for_role(role) | |
if project is None: | |
return "", "", "", "", project_id, milestones, reflection | |
# Generate outputs | |
checklist, suggestions, quote = generate_outputs(role, project_id, milestones, reflection) | |
# Store the generated outputs in Salesforce | |
store_result = store_in_salesforce(project, role, project_id, milestones, reflection, checklist, suggestions, quote) | |
return checklist, suggestions, quote, store_result, project_id, milestones, reflection | |
def create_interface(): | |
"""Create Gradio interface for manual testing.""" | |
with gr.Blocks() as demo: | |
gr.Markdown("### Construction Supervisor AI Coach") | |
with gr.Row(): | |
role = gr.Dropdown(choices=["Supervisor", "Foreman", "Project Manager"], label="Role", value="Supervisor") | |
project_id = gr.Textbox(label="Project ID", placeholder="e.g., PROJ-123") | |
milestones = gr.Textbox( | |
label="Milestones (comma-separated)", | |
placeholder="e.g., Foundation complete, Framing started, Roof installed" | |
) | |
reflection = gr.Textbox( | |
label="Reflection", | |
lines=3, | |
placeholder="e.g., Facing delays due to weather and equipment issues." | |
) | |
with gr.Row(): | |
submit = gr.Button("Generate") | |
clear = gr.Button("Clear") | |
sf_button = gr.Button("Process Salesforce Data") | |
checklist_output = gr.Textbox(label="Checklist", lines=4) | |
suggestions_output = gr.Textbox(label="Suggestions", lines=4) | |
quote_output = gr.Textbox(label="Quote", lines=2) | |
sf_output = gr.Textbox(label="Salesforce Processing Result", lines=2) | |
# Fetch data, generate outputs, and store in Salesforce when role changes | |
role.change( | |
fn=on_role_change, | |
inputs=role, | |
outputs=[checklist_output, suggestions_output, quote_output, sf_output, project_id, milestones, reflection] | |
) | |
submit.click( | |
fn=generate_outputs, | |
inputs=[role, project_id, milestones, reflection], | |
outputs=[checklist_output, suggestions_output, quote_output] | |
) | |
clear.click( | |
fn=lambda: ("Supervisor", "", "", ""), | |
inputs=None, | |
outputs=[role, project_id, milestones, reflection] | |
) | |
sf_button.click( | |
fn=fetch_and_process_salesforce_data, | |
inputs=None, | |
outputs=sf_output | |
) | |
return demo | |
if __name__ == "__main__": | |
try: | |
demo = create_interface() | |
demo.launch(server_name="0.0.0.0", server_port=7860, share=False) | |
except Exception as e: | |
logger.error(f"Error launching Gradio interface: {e}") |