geethareddy's picture
Update app.py
21f0b5d verified
import gradio as gr
import librosa
import numpy as np
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from simple_salesforce import Salesforce
import os
from datetime import datetime
import logging
import webrtcvad
import google.generativeai as genai
from gtts import gTTS
import tempfile
import base64
import re
from cryptography.fernet import Fernet
import pytz
from reportlab.lib.pagesizes import A4
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, ListFlowable, ListItem
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
import asyncio
import hashlib
from functools import lru_cache
# Set up logging with DEBUG level, adjusted for IST
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
usage_metrics = {"total_assessments": 0, "assessments_by_language": {}}
# Environment variables
SF_USERNAME = os.getenv("SF_USERNAME", "smartvoicebot@voice.com")
SF_PASSWORD = os.getenv("SF_PASSWORD", "voicebot1")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "jq4VVHUFti6TmzJDjjegv2h6b")
SF_INSTANCE_URL = os.getenv("SF_INSTANCE_URL", "https://swe42.sfdc-cehfhs.salesforce.com")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "AIzaSyBzr5vVpbe8CV1v70l3pGDp9vRJ76yCxdk")
ENCRYPTION_KEY = os.getenv("ENCRYPTION_KEY", Fernet.generate_key().decode())
DEFAULT_EMAIL = os.getenv("SALESFORCE_USER_EMAIL", "default@mindcare.com")
# Initialize encryption
cipher = Fernet(ENCRYPTION_KEY)
# Initialize Salesforce
try:
sf = Salesforce(
username=SF_USERNAME,
password=SF_PASSWORD,
security_token=SF_SECURITY_TOKEN,
instance_url=SF_INSTANCE_URL
)
logger.info(f"Connected to Salesforce at {SF_INSTANCE_URL}")
except Exception as e:
logger.error(f"Salesforce connection failed: {str(e)}")
sf = None
# Initialize Google Gemini
try:
genai.configure(api_key=GEMINI_API_KEY)
gemini_model = genai.GenerativeModel('gemini-1.5-flash')
chat = gemini_model.start_chat(history=[])
logger.info("Connected to Google Gemini")
except Exception as e:
logger.error(f"Google Gemini initialization failed: {str(e)}")
chat = None
# Load Whisper model
SUPPORTED_LANGUAGES = {"English": "english", "Hindi": "hindi", "Spanish": "spanish", "Mandarin": "mandarin"}
SALESFORCE_LANGUAGE_MAP = {"English": "English", "Hindi": "Hindi", "Spanish": "Spanish", "Mandarin": "Mandarin"}
LANGUAGE_CODES = {"English": "en", "Hindi": "hi", "Spanish": "es", "Mandarin": "zh"}
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
vad = webrtcvad.Vad(mode=2)
# Context for chatbot
base_info = """
MindCare is an AI health assistant focused on:
- **Mental health**: Emotional support, mindfulness, stress-relief, anxiety management.
- **Medical guidance**: Symptom analysis, possible conditions, medicine recommendations.
- **Decision-making**: Personal, professional, emotional choices.
- **General health**: Lifestyle, nutrition, physical and mental wellness.
- **Emergency assistance**: Suggest professional help or helplines for distress.
Tone: Empathetic, supportive, informative.
"""
mental_health = """
For stress/anxiety:
- Suggest mindfulness, deep breathing, gratitude journaling.
- Encourage breaks, hobbies, nature.
- Provide affirmations, self-care routines.
For distress:
- Offer emotional support, assure they’re not alone.
- Suggest trusted contacts or professionals.
- Provide crisis helplines.
"""
medical_assistance = """
For symptoms:
- Analyze and suggest possible conditions.
- Offer general advice, not replacing doctor consultation.
- Suggest lifestyle changes, home remedies.
- Advise medical attention for severe symptoms.
"""
medicine_recommendation = """
For medicine queries:
- Suggest common antibiotics (e.g., Amoxicillin), painkillers (e.g., Paracetamol, Ibuprofen).
- Note precautions, side effects.
- Stress doctor consultation before use.
"""
decision_guidance = """
For decisions:
- Weigh pros/cons logically.
- Consider values, goals, emotions.
- Suggest decision matrices or intuitive checks.
- Encourage trusted advice if needed.
"""
emergency_help = """
For severe distress:
- Provide immediate emotional support.
- Offer crisis helplines (region-specific).
- Encourage talking to trusted contacts or professionals.
- Assure help is available.
"""
context = [base_info, mental_health, medical_assistance, medicine_recommendation, decision_guidance, emergency_help]
def encrypt_data(data):
try:
return cipher.encrypt(data.encode('utf-8')).decode('utf-8')
except Exception as e:
logger.error(f"Encryption failed: {str(e)}")
return data
def decrypt_data(encrypted_data):
try:
return cipher.decrypt(encrypted_data.encode('utf-8')).decode('utf-8')
except Exception as e:
logger.error(f"Decryption failed: {str(e)}")
return encrypted_data
@lru_cache(maxsize=100)
def cached_transcribe(audio_file, language):
audio, sr = librosa.load(audio_file, sr=16000)
language_code = LANGUAGE_CODES.get(language, "en")
return transcribe_audio(audio, language_code)
def extract_health_features(audio, sr):
try:
audio = librosa.util.normalize(audio)
frame_duration = 30
frame_samples = int(sr * frame_duration / 1000)
frames = [audio[i:i + frame_samples] for i in range(0, len(audio), frame_samples)]
voiced_frames = [frame for frame in frames if len(frame) == frame_samples and vad.is_speech((frame * 32768).astype(np.int16).tobytes(), sr)]
if not voiced_frames:
raise ValueError("No voiced segments detected")
voiced_audio = np.concatenate(voiced_frames)
frame_step = max(1, len(voiced_audio) // (sr // 8)) # Reduced sampling for faster processing
pitches, magnitudes = librosa.piptrack(y=voiced_audio[::frame_step], sr=sr, fmin=75, fmax=300)
valid_pitches = [p for p in pitches[magnitudes > 0] if 75 <= p <= 300]
pitch = np.mean(valid_pitches) if valid_pitches else 0
jitter = np.std(valid_pitches) / pitch if pitch and valid_pitches else 0
jitter = min(jitter, 10)
amplitudes = librosa.feature.rms(y=voiced_audio, frame_length=512, hop_length=128)[0]
shimmer = np.std(amplitudes) / np.mean(amplitudes) if np.mean(amplitudes) else 0
shimmer = min(shimmer, 10)
energy = np.mean(amplitudes)
mfcc = np.mean(librosa.feature.mfcc(y=voiced_audio[::4], sr=sr, n_mfcc=4), axis=1) # Reduced sampling
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=voiced_audio[::4], sr=sr, n_fft=512, hop_length=128))
logger.debug(f"Extracted features: pitch={pitch:.2f}, jitter={jitter*100:.2f}%, shimmer={shimmer*100:.2f}%, energy={energy:.4f}, mfcc_mean={np.mean(mfcc):.2f}, spectral_centroid={spectral_centroid:.2f}")
return {
"pitch": pitch,
"jitter": jitter * 100,
"shimmer": shimmer * 100,
"energy": energy,
"mfcc_mean": np.mean(mfcc),
"spectral_centroid": spectral_centroid
}
except Exception as e:
logger.error(f"Feature extraction failed: {str(e)}")
raise
def transcribe_audio(audio, language="en"):
try:
whisper_model.config.forced_decoder_ids = whisper_processor.get_decoder_prompt_ids(
language=SUPPORTED_LANGUAGES.get({"en": "English", "hi": "Hindi", "es": "Spanish", "zh": "Mandarin"}.get(language, "English"), "english"), task="transcribe"
)
inputs = whisper_processor(audio, sampling_rate=16000, return_tensors="pt")
with torch.no_grad():
generated_ids = whisper_model.generate(inputs["input_features"], max_new_tokens=30) # Reduced tokens for speed
transcription = whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
logger.info(f"Transcription (language: {language}): {transcription}")
return transcription
except Exception as e:
logger.error(f"Transcription failed: {str(e)}")
return None
async def get_chatbot_response(message, language="English"):
if not chat or not message:
return "Unable to generate response.", None
language_code = LANGUAGE_CODES.get(language, "en")
full_context = "\n".join(context) + f"\nUser: {message}\nMindCare: Provide response in 6-8 simple bullet points, tailored to the user's input, in a clear and empathetic tone, in {language}."
try:
response = await asyncio.get_event_loop().run_in_executor(None, lambda: chat.send_message(full_context).text)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
tts = gTTS(text=response, lang=language_code, slow=False)
tts.save(temp_audio.name)
audio_path = temp_audio.name
logger.info(f"Generated response: {response[:100]}... and audio at {audio_path}")
return response, audio_path
except Exception as e:
logger.error(f"Chatbot response failed: {str(e)}")
return "Error generating response. Please check your input or API key.", None
def analyze_symptoms(text, features):
feedback = []
suggestions = []
text = text.lower() if text else ""
# Generate health assessment feedback
if "cough" in text or "coughing" in text:
feedback.append("You mentioned a cough, which may suggest a cold or respiratory issue.")
suggestions.extend([
"• Drink warm fluids like herbal tea or water to soothe your throat.",
"• Rest to help your body recover from possible infection.",
"• Use a humidifier to ease throat irritation.",
"• Consider over-the-counter cough remedies, but consult a doctor first.",
"• Monitor symptoms; see a doctor if the cough lasts over a week."
])
elif "fever" in text or "temperature" in text:
feedback.append("You mentioned a fever, which could indicate an infection.")
suggestions.extend([
"• Stay hydrated with water or electrolyte drinks.",
"• Rest to support your immune system.",
"• Monitor your temperature regularly.",
"• Use paracetamol to reduce fever, but follow dosage instructions.",
"• Seek medical advice if fever exceeds 100.4°F (38°C) for over 2 days."
])
elif "headache" in text:
feedback.append("You mentioned a headache, possibly due to stress or dehydration.")
suggestions.extend([
"• Drink plenty of water to stay hydrated.",
"• Take short breaks to relax your mind.",
"• Try a mild pain reliever like ibuprofen, but consult a doctor.",
"• Practice deep breathing to reduce tension.",
"• Ensure you're getting enough sleep (7-8 hours)."
])
elif "stress" in text or "anxious" in text or "mental stress" in text:
feedback.append("You mentioned stress or anxiety, which can affect well-being.")
suggestions.extend([
"• Try 5 minutes of deep breathing to calm your mind.",
"• Write in a journal to process your thoughts.",
"• Take a short walk in nature to relax.",
"• Practice mindfulness or meditation daily.",
"• Talk to a trusted friend or professional for support.",
"• Prioritize sleep and avoid excessive caffeine."
])
elif "respiratory" in text or "breathing" in text or "shortness of breath" in text:
feedback.append("You mentioned breathing issues, which may indicate asthma or infection.")
suggestions.extend([
"• Avoid triggers like smoke or allergens.",
"• Practice slow, deep breathing exercises.",
"• Stay in a well-ventilated area.",
"• Monitor symptoms and seek medical help if severe.",
"• Rest to reduce strain on your respiratory system."
])
elif "cold" in text:
feedback.append("You mentioned a cold, likely a viral infection.")
suggestions.extend([
"• Drink warm fluids like soup or tea.",
"• Rest to help your body fight the virus.",
"• Use saline nasal spray to relieve congestion.",
"• Take over-the-counter cold remedies, but consult a doctor.",
"• Stay hydrated and avoid strenuous activity."
])
# Voice feature-based feedback and suggestions
if features["jitter"] > 6.5:
feedback.append(f"High jitter ({features['jitter']:.2f}%) suggests vocal strain or respiratory issues.")
suggestions.append("• Rest your voice and avoid shouting.")
elif features["jitter"] > 4.0:
feedback.append(f"Moderate jitter ({features['jitter']:.2f}%) indicates possible vocal instability.")
suggestions.append("• Sip warm water to soothe your vocal cords.")
if features["shimmer"] > 7.5:
feedback.append(f"High shimmer ({features['shimmer']:.2f}%) may indicate emotional stress.")
suggestions.append("• Try relaxation techniques like yoga or meditation.")
elif features["shimmer"] > 5.0:
feedback.append(f"Moderate shimmer ({features['shimmer']:.2f}%) suggests mild vocal strain.")
suggestions.append("• Stay hydrated to support vocal health.")
if features["energy"] < 0.003:
feedback.append(f"Low vocal energy ({features['energy']:.4f}) may indicate fatigue.")
suggestions.append("• Ensure 7-8 hours of sleep nightly.")
elif features["energy"] < 0.007:
feedback.append(f"Low vocal energy ({features['energy']:.4f}) suggests possible tiredness.")
suggestions.append("• Take short naps to boost energy.")
if features["pitch"] < 70 or features["pitch"] > 290:
feedback.append(f"Unusual pitch ({features['pitch']:.2f} Hz) may indicate vocal issues.")
suggestions.append("• Consult a doctor for a vocal health check.")
elif 70 <= features["pitch"] <= 90 or 270 <= features["pitch"] <= 290:
feedback.append(f"Pitch ({features['pitch']:.2f} Hz) is slightly outside typical range.")
suggestions.append("• Avoid straining your voice during conversations.")
if features["spectral_centroid"] > 2700:
feedback.append(f"High spectral centroid ({features['spectral_centroid']:.2f} Hz) suggests tense speech.")
suggestions.append("• Practice slow, calm speaking to reduce tension.")
elif features["spectral_centroid"] > 2200:
feedback.append(f"Elevated spectral centroid ({features['spectral_centroid']:.2f} Hz) may indicate mild tension.")
suggestions.append("• Relax your jaw and shoulders while speaking.")
if not feedback:
feedback.append("No significant health concerns detected from voice or text analysis.")
suggestions.extend([
"• Maintain a balanced diet with fruits and vegetables.",
"• Exercise regularly for overall health.",
"• Stay hydrated with 8 glasses of water daily.",
"• Get 7-8 hours of sleep each night.",
"• Practice stress-relief techniques like meditation.",
"• Schedule regular health check-ups."
])
# Ensure suggestions are limited to 6-8 unique items
suggestions = list(dict.fromkeys(suggestions))[:8]
if len(suggestions) < 6:
suggestions.extend([
"• Stay active with light exercise like walking.",
"• Practice gratitude to boost mental well-being."
][:6 - len(suggestions)])
logger.debug(f"Generated feedback: {feedback}, Suggestions: {suggestions}")
return "\n".join(feedback), "\n".join(suggestions)
def store_user_consent(email, language):
if not sf:
logger.warning("Salesforce not connected; skipping consent storage")
return None
try:
email_to_use = email.strip() if email and email.strip() else DEFAULT_EMAIL
sanitized_email = email_to_use.replace("'", "\\'").replace('"', '\\"')
query = f"SELECT Id FROM HealthUser__c WHERE Email__c = '{sanitized_email}'"
logger.debug(f"Executing SOQL query: {query}")
user = sf.query(query)
user_id = None
if user["totalSize"] == 0:
logger.info(f"No user found for email: {sanitized_email}, creating new user")
user = sf.HealthUser__c.create({
"Email__c": sanitized_email,
"Language__c": SALESFORCE_LANGUAGE_MAP.get(language, "English"),
"ConsentGiven__c": True
})
user_id = user["id"]
logger.info(f"Created new user with email: {sanitized_email}, ID: {user_id}")
else:
user_id = user["records"][0]["Id"]
logger.info(f"Found existing user with email: {sanitized_email}, ID: {user_id}")
sf.HealthUser__c.update(user_id, {
"Language__c": SALESFORCE_LANGUAGE_MAP.get(language, "English"),
"ConsentGiven__c": True
})
logger.info(f"Updated user with email: {sanitized_email}")
sf.ConsentLog__c.create({
"HealthUser__c": user_id,
"ConsentType__c": "Voice Analysis",
"ConsentDate__c": datetime.utcnow().isoformat()
})
logger.info(f"Stored consent log for user ID: {user_id}")
return user_id
except Exception as e:
logger.error(f"Consent storage failed: {str(e)}")
logger.exception("Stack trace for consent storage failure:")
return None
def generate_pdf_report(feedback, transcription, features, language, email, suggestions):
try:
feedback = feedback.replace('<', '<').replace('>', '>').replace('&', '&')
transcription = transcription.replace('<', '<').replace('>', '>').replace('&', '&') if transcription else "None"
suggestions = suggestions.replace('<', '<').replace('>', '>').replace('&', '&') if suggestions else "None"
email_to_use = email.strip() if email and email.strip() else DEFAULT_EMAIL
email = email_to_use.replace('<', '<').replace('>', '>').replace('&', '&')
language_display = SALESFORCE_LANGUAGE_MAP.get(language, "English")
ist = pytz.timezone('Asia/Kolkata')
ist_time = datetime.now(ist).strftime("%I:%M %p IST on %B %d, %Y")
logger.debug(f"Generating PDF with IST time: {ist_time}, feedback: {feedback[:100]}..., transcription: {transcription[:100]}..., suggestions: {suggestions[:100]}..., language: {language_display}, email: {email}")
debug_dir = "/tmp/mindcare_logs"
os.makedirs(debug_dir, exist_ok=True)
timestamp = datetime.now(ist).strftime("%Y%m%d_%H%M%S")
pdf_path = os.path.join(debug_dir, f"report_{timestamp}.pdf")
doc = SimpleDocTemplate(pdf_path, pagesize=A4, rightMargin=inch, leftMargin=inch, topMargin=inch, bottomMargin=inch)
styles = getSampleStyleSheet()
title_style = ParagraphStyle(
name='Title',
fontSize=16,
leading=20,
alignment=1,
spaceAfter=12,
fontName='Times-Bold'
)
heading_style = ParagraphStyle(
name='Heading1',
fontSize=14,
leading=16,
spaceBefore=12,
spaceAfter=8,
fontName='Times-Bold'
)
subheading_style = ParagraphStyle(
name='Heading2',
fontSize=12,
leading=14,
spaceBefore=10,
spaceAfter=6,
fontName='Times-Bold'
)
normal_style = ParagraphStyle(
name='Normal',
fontSize=12,
leading=14,
spaceAfter=6,
fontName='Times-Roman'
)
bullet_style = ParagraphStyle(
name='Bullet',
fontSize=12,
leading=14,
leftIndent=20,
firstLineIndent=-10,
spaceAfter=4,
fontName='Times-Roman'
)
story = []
story.append(Paragraph("MindCare Health Assistant Report", title_style))
story.append(Paragraph(f"Generated on {ist_time}", normal_style))
story.append(Spacer(1, 0.5 * inch))
story.append(Paragraph("User Information", heading_style))
user_info = [
ListItem(Paragraph(f"<b>Email</b>: {email}", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Language</b>: {language_display}", bullet_style), bulletText="•")
]
story.append(ListFlowable(user_info, bulletType='bullet'))
story.append(Spacer(1, 0.25 * inch))
story.append(Paragraph("Voice Analysis Results", heading_style))
story.append(Paragraph("Health Assessment", subheading_style))
for line in feedback.split('\n'):
if line.strip():
story.append(Paragraph(line, normal_style))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Health Suggestions", subheading_style))
for line in suggestions.split('\n'):
if line.strip():
story.append(Paragraph(line, normal_style))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Voice Analysis Details", subheading_style))
details = [
ListItem(Paragraph(f"Pitch: {features['pitch']:.2f} Hz", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Jitter: {features['jitter']:.2f}% (voice stability)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Shimmer: {features['shimmer']:.2f}% (amplitude variation)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Energy: {features['energy']:.4f} (vocal intensity)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"MFCC Mean: {features['mfcc_mean']:.2f} (timbre quality)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Spectral Centroid: {features['spectral_centroid']:.2f} Hz (voice brightness)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Transcription: {transcription}", bullet_style), bulletText="•")
]
story.append(ListFlowable(details, bulletType='bullet'))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Transcription", subheading_style))
story.append(Paragraph(transcription, normal_style))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Voice Metrics", subheading_style))
metrics = [
ListItem(Paragraph(f"<b>Pitch</b>: {features['pitch']:.2f} Hz", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Jitter</b>: {features['jitter']:.2f}%", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Shimmer</b>: {features['shimmer']:.2f}%", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Energy</b>: {features['energy']:.4f}", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>MFCC Mean</b>: {features['mfcc_mean']:.2f}", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Spectral Centroid</b>: {features['spectral_centroid']:.2f} Hz", bullet_style), bulletText="•")
]
story.append(ListFlowable(metrics, bulletType='bullet'))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Disclaimer", heading_style))
story.append(Paragraph("This report is a preliminary analysis and not a medical diagnosis. Always consult a healthcare provider.", normal_style))
doc.build(story)
logger.info(f"Generated PDF report: {pdf_path}")
try:
with open(pdf_path, 'rb') as f:
pdf_content = f.read()
if len(pdf_content) > 0 and pdf_content.startswith(b'%PDF'):
return pdf_path, None
else:
logger.error(f"PDF file {pdf_path} is corrupt or empty")
return None, f"PDF generation failed: Generated PDF is corrupt or empty."
except Exception as e:
logger.error(f"Failed to verify PDF {pdf_path}: {str(e)}")
return None, f"PDF generation failed: Unable to verify PDF. Error: {str(e)}."
except Exception as e:
logger.error(f"PDF generation failed: {str(e)}")
logger.exception("Stack trace for PDF generation failure:")
return None, f"PDF generation failed: {str(e)}."
def store_in_salesforce(user_id, audio_file, feedback, respiratory_score, mental_health_score, features, transcription, language):
if not sf:
logger.warning("Salesforce not connected; skipping storage")
return
try:
with open(audio_file, "rb") as f:
audio_content = base64.b64encode(f.read()).decode()
content_version = sf.ContentVersion.create({
"Title": f"Voice_Assessment_{datetime.utcnow().isoformat()}",
"PathOnClient": os.path.basename(audio_file),
"VersionData": audio_content,
"IsMajorVersion": True
})
content_document_id = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version['id']}'")["records"][0]["ContentDocumentId"]
file_url = f"{SF_INSTANCE_URL}/lightning/r/ContentDocument/{content_document_id}/view"
feedback_str = feedback[:32767]
assessment = sf.VoiceAssessment__c.create({
"HealthUser__c": user_id,
"VoiceRecording__c": file_url,
"AssessmentResult__c": feedback_str,
"AssessmentDate__c": datetime.utcnow().isoformat(),
"ConfidenceScore__c": 95.0,
"RespiratoryScore__c": float(respiratory_score),
"MentalHealthScore__c": float(mental_health_score),
"Pitch__c": float(features["pitch"]),
"Jitter__c": float(features["jitter"]),
"Shimmer__c": float(features["shimmer"]),
"Energy__c": float(features["energy"]),
"Transcription__c": transcription or "None",
"Language__c": SALESFORCE_LANGUAGE_MAP.get(language, "English")
})
sf.ContentDocumentLink.create({
"ContentDocumentId": content_document_id,
"LinkedEntityId": assessment["id"],
"ShareType": "V"
})
logger.info(f"Stored assessment in Salesforce: {assessment['id']}")
except Exception as e:
logger.error(f"Salesforce storage failed: {str(e)}")
logger.exception("Stack trace for Salesforce storage failure:")
raise
async def analyze_voice(audio_file=None, language="English", email=None):
global usage_metrics
usage_metrics["total_assessments"] += 1
usage_metrics["assessments_by_language"][language] = usage_metrics["assessments_by_language"].get(language, 0) + 1
try:
if not audio_file or not os.path.exists(audio_file):
raise ValueError("No valid audio file provided")
audio, sr = librosa.load(audio_file, sr=16000)
max_duration = 5 # Reduced from 10 to 5 seconds for faster processing
if len(audio) > max_duration * sr:
audio = audio[:max_duration * sr]
logger.info(f"Truncated audio to first {max_duration} seconds for faster processing")
if len(audio) < sr:
raise ValueError("Audio too short (minimum 1 second)")
language_code = LANGUAGE_CODES.get(language, "en")
user_id = store_user_consent(email, language)
if not user_id:
logger.warning("Proceeding with analysis despite consent storage failure")
feedback_message = "Warning: User consent could not be stored in Salesforce, but analysis will proceed.\n"
else:
feedback_message = ""
features = extract_health_features(audio, sr)
transcription = cached_transcribe(audio_file, language)
feedback, suggestions = analyze_symptoms(transcription, features)
respiratory_score = features["jitter"]
mental_health_score = features["shimmer"]
feedback = feedback_message + feedback + "\n\n**Voice Analysis Details**:\n"
feedback += f"- Pitch: {features['pitch']:.2f} Hz\n"
feedback += f"- Jitter: {features['jitter']:.2f}% (voice stability)\n"
feedback += f"- Shimmer: {features['shimmer']:.2f}% (amplitude variation)\n"
feedback += f"- Energy: {features['energy']:.4f} (vocal intensity)\n"
feedback += f"- MFCC Mean: {features['mfcc_mean']:.2f} (timbre quality)\n"
feedback += f"- Spectral Centroid: {features['spectral_centroid']:.2f} Hz (voice brightness)\n"
feedback += f"- Transcription: {transcription if transcription else 'None'}\n"
feedback += f"- Email: {email if email and email.strip() else DEFAULT_EMAIL}\n"
feedback += "\n**Disclaimer**: This is a preliminary analysis. Consult a healthcare provider for professional evaluation."
if user_id and sf:
store_in_salesforce(user_id, audio_file, feedback, respiratory_score, mental_health_score, features, transcription, language)
else:
logger.warning("Skipping Salesforce storage due to missing user_id or Salesforce connection")
file_path, pdf_error = generate_pdf_report(feedback, transcription, features, language, email, suggestions)
if pdf_error:
feedback += f"\n\n**Error**: {pdf_error}"
return feedback, file_path, suggestions, None
# Generate audio response based on suggestions
response_text = suggestions
response, audio_path = await get_chatbot_response(response_text, language)
if audio_path:
logger.info(f"Generated audio response at {audio_path}")
else:
logger.warning("Failed to generate audio response")
return feedback, file_path, response, None
try:
os.remove(audio_file)
logger.info(f"Deleted audio file: {audio_file}")
except Exception as e:
logger.error(f"Failed to delete audio file: {str(e)}")
return feedback, file_path, response, audio_path
except Exception as e:
logger.error(f"Audio processing failed: {str(e)}")
return f"Error: {str(e)}", None, "Error: Could not generate suggestions due to audio processing failure.", None
def launch():
custom_css = """
.gradio-container {
max-width: 1200px;
margin: auto;
font-family: 'Roboto', sans-serif;
background-color: var(--background-primary);
color: var(--text-primary);
}
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
h1, h3 {
background: linear-gradient(to right, #007bff, #0056b3);
color: white;
padding: 15px;
border-radius: 8px;
text-align: center;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gr-column {
background: var(--background-secondary);
border-radius: 8px;
padding: 20px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
margin: 10px;
color: var(--text-primary);
}
.gr-button {
background: #007bff;
color: white;
border: none;
border-radius: 6px;
padding: 10px 20px;
font-weight: bold;
transition: background 0.3s;
}
.gr-button:hover {
background: #0056b3;
}
.gr-textbox, .gr-dropdown, .gr-checkbox, .gr-file, .gr-audio {
border-radius: 6px;
border: 1px solid var(--border-color);
background: var(--background-secondary);
color: var(--text-primary);
}
.gr-textbox textarea {
font-size: 14px;
color: var(--text-primary);
}
#health-results {
background: var(--success-background);
border: 1px solid var(--success-border);
border-radius: 6px;
color: var(--text-primary);
}
.no-microphone-warning {
color: var(--error-text);
font-weight: bold;
}
"""
def check_microphone_access():
try:
from navigator import mediaDevices
devices = mediaDevices.enumerateDevices()
for device in devices:
if device.kind == "audioinput":
return None
return "Microphone access is not available. Please upload an audio file or check browser permissions."
except Exception as e:
logger.error(f"Microphone access check failed: {str(e)}")
return "Microphone access is not available. Please upload an audio file or check browser permissions."
with gr.Blocks(title="MindCare Health Assistant", css=custom_css) as demo:
gr.Markdown("Record your voice or type a message for health assessments and suggestions.")
with gr.Row():
with gr.Column():
gr.Markdown("### Voice Analysis")
mic_warning = gr.Markdown()
mic_warning.value = check_microphone_access() or ""
gr.Markdown("Upload voice (1+ sec) describing symptoms (e.g., 'I have a cough' or 'I feel stressed'). Note: Microphone recording may not be supported in all contexts; use file upload instead.")
email_input = gr.Textbox(label="Enter Your Email", placeholder="e.g., user@example.com", value="")
language_input = gr.Dropdown(choices=list(SUPPORTED_LANGUAGES.keys()), label="Select Language", value="English")
consent_input = gr.Checkbox(label="I consent to data storage and voice analysis", value=True, interactive=False)
audio_input = gr.Audio(type="filepath", label="Upload Voice (WAV, MP3, FLAC)", format="wav", interactive=True)
voice_output = gr.Textbox(label="Health Assessment Results", elem_id="health-results")
file_output = gr.File(label="Download Assessment Report (PDF)", file_types=[".pdf"])
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
with gr.Column():
gr.Markdown("### Health Suggestions")
gr.Markdown("Enter a message for personalized health advice or get suggestions based on voice analysis.")
text_input = gr.Textbox(label="Enter your message (optional)")
text_output = gr.Textbox(label="Response")
audio_output = gr.Audio(label="Response Audio")
suggest_submit_btn = gr.Button("Submit")
suggest_clear_btn = gr.Button("Clear")
submit_btn.click(
fn=analyze_voice,
inputs=[audio_input, language_input, email_input],
outputs=[voice_output, file_output, text_output, audio_output]
)
clear_btn.click(
fn=lambda: (gr.update(value=None), gr.update(value="English"), gr.update(value=""), gr.update(value=""), gr.update(value=None), gr.update(value=""), gr.update(value=None)),
inputs=None,
outputs=[audio_input, language_input, email_input, voice_output, file_output, text_output, audio_output]
)
suggest_submit_btn.click(
fn=get_chatbot_response,
inputs=[text_input, language_input],
outputs=[text_output, audio_output]
)
suggest_clear_btn.click(
fn=lambda: (gr.update(value=""), gr.update(value=""), gr.update(value=None)),
inputs=None,
outputs=[text_input, text_output, audio_output]
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
launch()