Files changed (1) hide show
  1. app.py +33 -29
app.py CHANGED
@@ -1,29 +1,33 @@
1
-
2
- import streamlit as st
3
- import torch
4
- from datasets import load_dataset
5
- from sentence_transformers import SentenceTransformer, util
6
-
7
- embedder = SentenceTransformer('all-mpnet-base-v2')
8
-
9
- st.title("iSeBetter : Semantic Transformer")
10
- st.header("Analyzing Patterns in Text")
11
-
12
-
13
- text_input = st.text_area("Enter the issue details below:")
14
-
15
-
16
- if st.button("Analyse the Issues"):
17
- # Perform analysis (your existing code)
18
- query_embedding = embedder.encode(text_input, convert_to_tensor=True)
19
- corpus_embeddings = torch.load('saved_corpus.pt')
20
- corpus_embeddings_name = torch.load('saved_corpus_list.txt')
21
- cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
22
- top_results = torch.topk(cos_scores, k=5)
23
-
24
- # Results presentation
25
- st.subheader("Top 5 Matched Results:")
26
- result_table = "<table><tr><th>Matched Text</th><th>Score</th></tr>"
27
- for score, idx in zip(top_results[0], top_results[1]):
28
- st.markdown(f"- **{corpus_embeddings_name[idx]}** (Score: {score:.4f})")
29
- st.progress(score.item())
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from sentence_transformers import SentenceTransformer, util
4
+
5
+ embedder = SentenceTransformer('all-mpnet-base-v2')
6
+
7
+ st.title("iSeBetter: Semantic Issue Transformer")
8
+ st.caption("Empower Developers with Advanced AI Issue Resolution")
9
+
10
+ st.markdown('#')
11
+
12
+ st.subheader("Search for Similar Issues")
13
+ form = st.form("Search for Similar Issues")
14
+ text_input = form.text_area("Please enter the issue details",
15
+ help="Title and description of the issue could be a good start!")
16
+
17
+ if form.form_submit_button():
18
+ # Perform semantic search
19
+ query_embedding = embedder.encode(text_input, convert_to_tensor=True)
20
+ corpus_embeddings = torch.load('saved_corpus.pt')
21
+ corpus_embeddings_name = torch.load('saved_corpus_list.txt')
22
+ cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
23
+ top_results = torch.topk(cos_scores, k=5)
24
+
25
+ st.markdown('#')
26
+
27
+ # Display results
28
+ st.subheader("Top 5 Similar Issues")
29
+ st.divider()
30
+ for score, idx in zip(top_results[0], top_results[1]):
31
+ st.write(corpus_embeddings_name[idx])
32
+ st.progress(score.item(), f"Score: {score:.4f}")
33
+ st.divider()