Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import spaces | |
import time | |
import gradio as gr | |
import torch | |
import functools | |
import numpy as np | |
import torch.nn.functional as F | |
from diffusers import FluxPipeline, AutoencoderTiny, FluxKontextPipeline | |
from transformers import CLIPProcessor, CLIPModel, AutoModel | |
from transformers.models.clip.modeling_clip import _get_vector_norm | |
from my_utils.group_inference import run_group_inference | |
from my_utils.default_values import apply_defaults | |
import argparse | |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") | |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") | |
# pipe.enable_model_cpu_offload() | |
m_clip = CLIPModel.from_pretrained("multimodalart/clip-vit-base-patch32").to("cuda") | |
prep_clip = CLIPProcessor.from_pretrained("multimodalart/clip-vit-base-patch32") | |
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to("cuda") | |
# Get default args for flux-schnell | |
default_args = argparse.Namespace( | |
model_name="flux-kontext", | |
prompt=None, | |
starting_candidates=None, | |
output_group_size=None, | |
pruning_ratio=None, | |
lambda_score=None, | |
seed=None, | |
unary_term="clip_text_img", | |
binary_term="diversity_dino", | |
guidance_scale=None, | |
num_inference_steps=None, | |
height=512, | |
width=512, | |
) | |
default_args = apply_defaults(default_args) | |
# Scoring functions | |
def unary_clip_text_img_score(l_images, target_caption, device="cuda"): | |
"""Compute CLIP text-image similarity scores.""" | |
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device) | |
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device) | |
b_images = torch.cat(l_images, dim=0) | |
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False) | |
b_images = b_images * 0.5 + 0.5 | |
b_images = (b_images - _img_mean) / _img_std | |
text_encoding = prep_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device) | |
output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image / m_clip.logit_scale.exp() | |
return output.view(-1).cpu().numpy() | |
def binary_dino_diversity_score(l_images, device="cuda"): | |
"""Compute pairwise diversity scores using DINO.""" | |
b_images = torch.cat(l_images, dim=0) | |
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device) | |
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device) | |
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False) | |
b_images = b_images * 0.5 + 0.5 | |
b_images = (b_images - _img_mean) / _img_std | |
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu() | |
N = len(l_images) | |
score_matrix = np.zeros((N, N)) | |
for i in range(N): | |
f1 = all_features[i] | |
for j in range(i+1, N): | |
f2 = all_features[j] | |
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item() | |
score_matrix[i, j] = cos_sim | |
return score_matrix | |
def binary_dino_cls_score(l_images, device="cuda"): | |
"""Compute pairwise diversity scores using DINO CLS tokens.""" | |
b_images = torch.cat(l_images, dim=0) | |
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device) | |
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device) | |
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False) | |
b_images = b_images * 0.5 + 0.5 | |
b_images = (b_images - _img_mean) / _img_std | |
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu() | |
N = len(l_images) | |
score_matrix = np.zeros((N, N)) | |
for i in range(N): | |
f1 = all_features[i] | |
for j in range(i+1, N): | |
f2 = all_features[j] | |
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item() | |
score_matrix[i, j] = cos_sim | |
return score_matrix | |
def binary_clip_diversity_score(l_images, device="cuda"): | |
"""Compute pairwise diversity scores using CLIP.""" | |
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device) | |
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device) | |
b_images = torch.cat(l_images, dim=0) | |
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False) | |
b_images = b_images * 0.5 + 0.5 | |
b_images = (b_images - _img_mean) / _img_std | |
vision_outputs = m_clip.vision_model( | |
pixel_values=b_images, | |
output_attentions=False, | |
output_hidden_states=False, | |
interpolate_pos_encoding=False, | |
return_dict=True | |
) | |
image_embeds = m_clip.visual_projection(vision_outputs[1]) | |
image_embeds = image_embeds / _get_vector_norm(image_embeds) | |
N = len(l_images) | |
score_matrix = np.zeros((N, N)) | |
for i in range(N): | |
f1 = image_embeds[i] | |
for j in range(i+1, N): | |
f2 = image_embeds[j] | |
cos_sim = (1 - torch.dot(f1, f2)).item() | |
score_matrix[i, j] = cos_sim | |
return score_matrix | |
def get_score_functions(unary_term, binary_term, prompt): | |
"""Get the appropriate scoring functions based on selected terms.""" | |
# Unary score function (always CLIP for flux-schnell) - bind the prompt | |
unary_score_fn = functools.partial(unary_clip_text_img_score, target_caption=prompt, device="cuda") | |
# Binary score function | |
if binary_term == "diversity_dino": | |
binary_score_fn = functools.partial(binary_dino_diversity_score, device="cuda") | |
elif binary_term == "dino_cls_pairwise": | |
binary_score_fn = functools.partial(binary_dino_cls_score, device="cuda") | |
elif binary_term == "diversity_clip": | |
binary_score_fn = functools.partial(binary_clip_diversity_score, device="cuda") | |
else: | |
raise ValueError(f"Invalid binary term: {binary_term}") | |
return unary_score_fn, binary_score_fn | |
def generate_images(prompt, starting_candidates, output_group_size, pruning_ratio, | |
lambda_score, seed, unary_term, binary_term, input_image=None, progress=gr.Progress(track_tqdm=True)): | |
"""Generate images using group inference with progressive pruning.""" | |
# Get scoring functions with prompt bound to unary function | |
unary_score_fn, binary_score_fn = get_score_functions(unary_term, binary_term, prompt) | |
# Create inference args | |
inference_args = { | |
"model_name": "flux-kontext", | |
"prompt": prompt, | |
"guidance_scale": default_args.guidance_scale, | |
"num_inference_steps": default_args.num_inference_steps, | |
"max_sequence_length": 256, | |
"height": default_args.height, | |
"width": default_args.width, | |
"unary_score_fn": unary_score_fn, | |
"binary_score_fn": binary_score_fn, | |
"output_group_size": output_group_size, | |
"pruning_ratio": pruning_ratio, | |
"lambda_score": lambda_score, | |
"l_generator": [torch.Generator("cpu").manual_seed(seed + i) for i in range(starting_candidates)], | |
"starting_candidates": starting_candidates, | |
"skip_first_cfg": True, | |
} | |
inference_args["input_image"] = input_image | |
print(f"pruning ratio is: {pruning_ratio}") | |
# Run group inference | |
t_start = time.time() | |
output_group = run_group_inference(pipe, **inference_args) | |
t_end = time.time() | |
print(f"Time taken for group inference: {t_end - t_start} seconds") | |
return output_group | |
# Load custom CSS | |
css_path = os.path.join(os.path.dirname(__file__), "styles.css") | |
with open(css_path, "r") as f: | |
custom_css = f.read() | |
# JavaScript to force light mode | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'light') { | |
url.searchParams.set('__theme', 'light'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Soft(), elem_id="main-container") as demo: | |
# Title and header | |
gr.HTML( | |
""" | |
<div class="title_left"> | |
<h1>Scaling Group Inference for Diverse and High-Quality Generation</h1> | |
<div class="author-container"> | |
<div class="grid-item cmu"><a href="https://gauravparmar.com/">Gaurav Parmar</a></div> | |
<div class="grid-item snap"><a href="https://orpatashnik.github.io/">Or Patashnik</a></div> | |
<div class="grid-item snap"><a href="https://scholar.google.com/citations?user=uD79u6oAAAAJ&hl=en">Daniil Ostashev</a></div> | |
<div class="grid-item snap"><a href="https://wangkua1.github.io/">Kuan-Chieh (Jackson) Wang</a></div> | |
<div class="grid-item snap"><a href="https://kfiraberman.github.io/">Kfir Aberman</a></div> | |
</div> | |
<div class="author-container"> | |
<div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~srinivas/">Srinivasa Narasimhan</a></div> | |
<div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~junyanz/">Jun-Yan Zhu</a></div> | |
</div> | |
<br> | |
<div class="affiliation-container"> | |
<div class="grid-item cmu"> <p>Carnegie Mellon University</p></div> | |
<div class="grid-item snap"> <p>Snap Research</p></div> | |
</div> | |
<br> | |
<h2>DEMO: Text-to-Image Group Inference with FLUX.1-Schnell</h2> | |
</div> | |
""" | |
) | |
with gr.Row(scale=1): | |
with gr.Column(scale=1.0): | |
prompt_placeholder = "Cat is playing outside in nature." | |
prompt_default = "Cat is playing outside in nature." | |
prompt = gr.Textbox(label="Prompt", placeholder=prompt_placeholder, lines=4, value=prompt_default) | |
input_image = gr.Image(label="Input Image", type="pil", sources=["upload"]) | |
with gr.Column(scale=1.0): | |
with gr.Row(elem_id="starting-candidates-row"): | |
gr.Text("Starting Candidates:", container=False, interactive=False, scale=5) | |
starting_candidates = gr.Number(value=default_args.starting_candidates, precision=0, container=False, show_label=False, scale=1) | |
with gr.Row(elem_id="output-group-size-row"): | |
gr.Text("Output Group Size:", container=False, interactive=False, scale=5) | |
output_group_size = gr.Number(value=default_args.output_group_size, precision=0, container=False, show_label=False, scale=1) | |
with gr.Column(scale=1.0): | |
with gr.Accordion("Advanced Options", open=False, elem_id="advanced-options-accordion"): | |
with gr.Row(): | |
gr.Text("Pruning Ratio:", container=False, interactive=False, elem_id="pruning-ratio-label", scale=3) | |
pruning_ratio = gr.Number(value=default_args.pruning_ratio, precision=2, container=False, show_label=False, scale=1) | |
with gr.Row(): | |
gr.Text("Lambda:", container=False, interactive=False, elem_id="lambda-label", scale=5) | |
lambda_score = gr.Number(value=default_args.lambda_score, precision=1, container=False, show_label=False, scale=1) | |
with gr.Row(): | |
gr.Text("Seed:", container=False, interactive=False, elem_id="seed-label", scale=5) | |
seed = gr.Number(value=42, precision=0, container=False, show_label=False, scale=1) | |
with gr.Row(): | |
gr.Text("Unary:", container=False, interactive=False, elem_id="unary-term-label", scale=2) | |
unary_term = gr.Dropdown(choices=["clip_text_img"], value=default_args.unary_term, container=False, show_label=False, scale=3) | |
with gr.Row(): | |
gr.Text("Binary:", container=False, interactive=False, elem_id="binary-term-label", scale=2) | |
binary_term = gr.Dropdown(choices=["diversity_dino", "diversity_clip", "dino_cls_pairwise"], value=default_args.binary_term, | |
container=False, show_label=False, scale=3) | |
# Instructions for users | |
gr.HTML( | |
""" | |
<div style="margin: 15px 0; padding: 10px; background-color: #f0f0f0; border-radius: 5px; font-size: 14px;"> | |
<strong>Tips:</strong> | |
<ul style="margin: 5px 0; padding-left: 20px;"> | |
<li>Try out the (cached) examples below first! </li> | |
<li>Higher lambda → more diverse outputs (no added runtime cost)</li> | |
<li>Lower lambda → improved quality and text-adherence (no added runtime cost)</li> | |
<li>More starting candidates → better quality and diversity (slower runtime)</li> | |
</ul> | |
</div> | |
""" | |
) | |
with gr.Row(scale=1): | |
generate_btn = gr.Button("Generate", variant="primary") | |
with gr.Row(scale=1): | |
output_gallery_group = gr.Gallery(label="Group Inference", show_label=True,elem_id="gallery", columns=4, height="auto") | |
generate_btn.click( | |
fn=generate_images, | |
inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image], | |
outputs=[output_gallery_group] | |
) | |
gr.Examples( | |
examples=[ | |
["Cat is sitting in a cafe and working on his laptop.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"], | |
["Cat is playing outside in nature.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"], | |
["Cat is drinking a glass of milk.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"], | |
["Cat is an astronaut landing on the moon.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"], | |
["Cat is surfing in the ocean.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"], | |
], | |
inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image], | |
outputs=[output_gallery_group], | |
fn=generate_images, | |
cache_examples=True, | |
label="Examples" | |
) | |
demo.launch() |