gaparmar
adding utils:
6213d31
import os
import spaces
import time
import gradio as gr
import torch
import functools
import numpy as np
import torch.nn.functional as F
from diffusers import FluxPipeline, AutoencoderTiny, FluxKontextPipeline
from transformers import CLIPProcessor, CLIPModel, AutoModel
from transformers.models.clip.modeling_clip import _get_vector_norm
from my_utils.group_inference import run_group_inference
from my_utils.default_values import apply_defaults
import argparse
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
# pipe.enable_model_cpu_offload()
m_clip = CLIPModel.from_pretrained("multimodalart/clip-vit-base-patch32").to("cuda")
prep_clip = CLIPProcessor.from_pretrained("multimodalart/clip-vit-base-patch32")
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to("cuda")
# Get default args for flux-schnell
default_args = argparse.Namespace(
model_name="flux-kontext",
prompt=None,
starting_candidates=None,
output_group_size=None,
pruning_ratio=None,
lambda_score=None,
seed=None,
unary_term="clip_text_img",
binary_term="diversity_dino",
guidance_scale=None,
num_inference_steps=None,
height=512,
width=512,
)
default_args = apply_defaults(default_args)
# Scoring functions
@torch.no_grad()
def unary_clip_text_img_score(l_images, target_caption, device="cuda"):
"""Compute CLIP text-image similarity scores."""
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
b_images = torch.cat(l_images, dim=0)
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
b_images = b_images * 0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
text_encoding = prep_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device)
output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image / m_clip.logit_scale.exp()
return output.view(-1).cpu().numpy()
@torch.no_grad()
def binary_dino_diversity_score(l_images, device="cuda"):
"""Compute pairwise diversity scores using DINO."""
b_images = torch.cat(l_images, dim=0)
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
b_images = b_images * 0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu()
N = len(l_images)
score_matrix = np.zeros((N, N))
for i in range(N):
f1 = all_features[i]
for j in range(i+1, N):
f2 = all_features[j]
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
score_matrix[i, j] = cos_sim
return score_matrix
@torch.no_grad()
def binary_dino_cls_score(l_images, device="cuda"):
"""Compute pairwise diversity scores using DINO CLS tokens."""
b_images = torch.cat(l_images, dim=0)
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
b_images = b_images * 0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu()
N = len(l_images)
score_matrix = np.zeros((N, N))
for i in range(N):
f1 = all_features[i]
for j in range(i+1, N):
f2 = all_features[j]
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
score_matrix[i, j] = cos_sim
return score_matrix
@torch.no_grad()
def binary_clip_diversity_score(l_images, device="cuda"):
"""Compute pairwise diversity scores using CLIP."""
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
b_images = torch.cat(l_images, dim=0)
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
b_images = b_images * 0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
vision_outputs = m_clip.vision_model(
pixel_values=b_images,
output_attentions=False,
output_hidden_states=False,
interpolate_pos_encoding=False,
return_dict=True
)
image_embeds = m_clip.visual_projection(vision_outputs[1])
image_embeds = image_embeds / _get_vector_norm(image_embeds)
N = len(l_images)
score_matrix = np.zeros((N, N))
for i in range(N):
f1 = image_embeds[i]
for j in range(i+1, N):
f2 = image_embeds[j]
cos_sim = (1 - torch.dot(f1, f2)).item()
score_matrix[i, j] = cos_sim
return score_matrix
def get_score_functions(unary_term, binary_term, prompt):
"""Get the appropriate scoring functions based on selected terms."""
# Unary score function (always CLIP for flux-schnell) - bind the prompt
unary_score_fn = functools.partial(unary_clip_text_img_score, target_caption=prompt, device="cuda")
# Binary score function
if binary_term == "diversity_dino":
binary_score_fn = functools.partial(binary_dino_diversity_score, device="cuda")
elif binary_term == "dino_cls_pairwise":
binary_score_fn = functools.partial(binary_dino_cls_score, device="cuda")
elif binary_term == "diversity_clip":
binary_score_fn = functools.partial(binary_clip_diversity_score, device="cuda")
else:
raise ValueError(f"Invalid binary term: {binary_term}")
return unary_score_fn, binary_score_fn
@spaces.GPU(duration=200)
def generate_images(prompt, starting_candidates, output_group_size, pruning_ratio,
lambda_score, seed, unary_term, binary_term, input_image=None, progress=gr.Progress(track_tqdm=True)):
"""Generate images using group inference with progressive pruning."""
# Get scoring functions with prompt bound to unary function
unary_score_fn, binary_score_fn = get_score_functions(unary_term, binary_term, prompt)
# Create inference args
inference_args = {
"model_name": "flux-kontext",
"prompt": prompt,
"guidance_scale": default_args.guidance_scale,
"num_inference_steps": default_args.num_inference_steps,
"max_sequence_length": 256,
"height": default_args.height,
"width": default_args.width,
"unary_score_fn": unary_score_fn,
"binary_score_fn": binary_score_fn,
"output_group_size": output_group_size,
"pruning_ratio": pruning_ratio,
"lambda_score": lambda_score,
"l_generator": [torch.Generator("cpu").manual_seed(seed + i) for i in range(starting_candidates)],
"starting_candidates": starting_candidates,
"skip_first_cfg": True,
}
inference_args["input_image"] = input_image
print(f"pruning ratio is: {pruning_ratio}")
# Run group inference
t_start = time.time()
output_group = run_group_inference(pipe, **inference_args)
t_end = time.time()
print(f"Time taken for group inference: {t_end - t_start} seconds")
return output_group
# Load custom CSS
css_path = os.path.join(os.path.dirname(__file__), "styles.css")
with open(css_path, "r") as f:
custom_css = f.read()
# JavaScript to force light mode
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
# Create Gradio interface
with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Soft(), elem_id="main-container") as demo:
# Title and header
gr.HTML(
"""
<div class="title_left">
<h1>Scaling Group Inference for Diverse and High-Quality Generation</h1>
<div class="author-container">
<div class="grid-item cmu"><a href="https://gauravparmar.com/">Gaurav Parmar</a></div>
<div class="grid-item snap"><a href="https://orpatashnik.github.io/">Or Patashnik</a></div>
<div class="grid-item snap"><a href="https://scholar.google.com/citations?user=uD79u6oAAAAJ&hl=en">Daniil Ostashev</a></div>
<div class="grid-item snap"><a href="https://wangkua1.github.io/">Kuan-Chieh (Jackson) Wang</a></div>
<div class="grid-item snap"><a href="https://kfiraberman.github.io/">Kfir Aberman</a></div>
</div>
<div class="author-container">
<div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~srinivas/">Srinivasa Narasimhan</a></div>
<div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~junyanz/">Jun-Yan Zhu</a></div>
</div>
<br>
<div class="affiliation-container">
<div class="grid-item cmu"> <p>Carnegie Mellon University</p></div>
<div class="grid-item snap"> <p>Snap Research</p></div>
</div>
<br>
<h2>DEMO: Text-to-Image Group Inference with FLUX.1-Schnell</h2>
</div>
"""
)
with gr.Row(scale=1):
with gr.Column(scale=1.0):
prompt_placeholder = "Cat is playing outside in nature."
prompt_default = "Cat is playing outside in nature."
prompt = gr.Textbox(label="Prompt", placeholder=prompt_placeholder, lines=4, value=prompt_default)
input_image = gr.Image(label="Input Image", type="pil", sources=["upload"])
with gr.Column(scale=1.0):
with gr.Row(elem_id="starting-candidates-row"):
gr.Text("Starting Candidates:", container=False, interactive=False, scale=5)
starting_candidates = gr.Number(value=default_args.starting_candidates, precision=0, container=False, show_label=False, scale=1)
with gr.Row(elem_id="output-group-size-row"):
gr.Text("Output Group Size:", container=False, interactive=False, scale=5)
output_group_size = gr.Number(value=default_args.output_group_size, precision=0, container=False, show_label=False, scale=1)
with gr.Column(scale=1.0):
with gr.Accordion("Advanced Options", open=False, elem_id="advanced-options-accordion"):
with gr.Row():
gr.Text("Pruning Ratio:", container=False, interactive=False, elem_id="pruning-ratio-label", scale=3)
pruning_ratio = gr.Number(value=default_args.pruning_ratio, precision=2, container=False, show_label=False, scale=1)
with gr.Row():
gr.Text("Lambda:", container=False, interactive=False, elem_id="lambda-label", scale=5)
lambda_score = gr.Number(value=default_args.lambda_score, precision=1, container=False, show_label=False, scale=1)
with gr.Row():
gr.Text("Seed:", container=False, interactive=False, elem_id="seed-label", scale=5)
seed = gr.Number(value=42, precision=0, container=False, show_label=False, scale=1)
with gr.Row():
gr.Text("Unary:", container=False, interactive=False, elem_id="unary-term-label", scale=2)
unary_term = gr.Dropdown(choices=["clip_text_img"], value=default_args.unary_term, container=False, show_label=False, scale=3)
with gr.Row():
gr.Text("Binary:", container=False, interactive=False, elem_id="binary-term-label", scale=2)
binary_term = gr.Dropdown(choices=["diversity_dino", "diversity_clip", "dino_cls_pairwise"], value=default_args.binary_term,
container=False, show_label=False, scale=3)
# Instructions for users
gr.HTML(
"""
<div style="margin: 15px 0; padding: 10px; background-color: #f0f0f0; border-radius: 5px; font-size: 14px;">
<strong>Tips:</strong>
<ul style="margin: 5px 0; padding-left: 20px;">
<li>Try out the (cached) examples below first! </li>
<li>Higher lambda → more diverse outputs (no added runtime cost)</li>
<li>Lower lambda → improved quality and text-adherence (no added runtime cost)</li>
<li>More starting candidates → better quality and diversity (slower runtime)</li>
</ul>
</div>
"""
)
with gr.Row(scale=1):
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row(scale=1):
output_gallery_group = gr.Gallery(label="Group Inference", show_label=True,elem_id="gallery", columns=4, height="auto")
generate_btn.click(
fn=generate_images,
inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image],
outputs=[output_gallery_group]
)
gr.Examples(
examples=[
["Cat is sitting in a cafe and working on his laptop.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
["Cat is playing outside in nature.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
["Cat is drinking a glass of milk.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
["Cat is an astronaut landing on the moon.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
["Cat is surfing in the ocean.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
],
inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image],
outputs=[output_gallery_group],
fn=generate_images,
cache_examples=True,
label="Examples"
)
demo.launch()