File size: 4,809 Bytes
edbbffa
 
 
 
 
def2cf6
edbbffa
 
 
 
49c5d4a
 
 
edbbffa
 
8662b29
edbbffa
8662b29
edbbffa
 
 
 
 
 
 
 
 
 
 
49c5d4a
 
 
 
 
2678eae
49c5d4a
2678eae
49c5d4a
 
2678eae
49c5d4a
 
 
 
 
2678eae
edbbffa
 
 
 
 
 
 
 
 
 
df5c2cf
 
 
 
 
 
 
 
400d220
df5c2cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
098bd84
df5c2cf
 
 
ed132ab
df5c2cf
 
 
 
 
 
 
 
 
a40406b
df5c2cf
 
 
 
 
 
 
400d220
 
5476995
 
400d220
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from keras.models import load_model
from PIL import Image
import numpy as np
import cv2 
import requests
from keras.models import model_from_json
import face_recognition
import os
from datetime import datetime

from keras.models import model_from_json
from keras.preprocessing.image import img_to_array
from PIL import Image

import io
import streamlit as st
bytes_data=None

Images = []
classnames = []
myList = os.listdir()
#st.write(myList)
for cls in myList:
    if os.path.splitext(cls)[1] == ".jpg"  :
        curImg = cv2.imread(f'{cls}')
        Images.append(curImg)
        classnames.append(os.path.splitext(cls)[0])
st.write(classnames)

# load model
emotion_dict = {0:'angry', 1 :'happy', 2: 'neutral', 3:'sad', 4: 'surprise'}
# load json and create model
json_file = open('emotion_model1.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
classifier = model_from_json(loaded_model_json)

# load weights into new model
classifier.load_weights("emotion_model1.h5")

#load face
try:
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
except Exception:
    st.write("Error loading cascade classifiers")

def findEncodings(Images):
    encodeList = []
    for img in Images:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        encode = face_recognition.face_encodings(img)[0]
        encodeList.append(encode)
    return encodeList

encodeListknown = findEncodings(Images)
st.write('Encoding Complete')

img_file_buffer=st.camera_input("Take a picture")
if img_file_buffer is not None:
     
    test_image = Image.open(img_file_buffer)
    image1 = Image.open(img_file_buffer)
    st.image(test_image, use_column_width=True)
    image = np.asarray(test_image)
    
    img = np.asarray(image1)
    img = cv2.resize(img,(0,0),None,0.25,0.25)

    #image gray
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(
        image=img_gray, scaleFactor=1.3, minNeighbors=5)
    try:
        for (x, y, w, h) in faces:
            cv2.rectangle(img=img, pt1=(x, y), pt2=(
                x + w, y + h), color=(255, 0, 0), thickness=2)
            roi_gray = img_gray[y:y + h, x:x + w]
            roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
            if np.sum([roi_gray]) != 0:
                roi = roi_gray.astype('float') / 255.0
                roi = img_to_array(roi)
                roi = np.expand_dims(roi, axis=0)
                prediction = classifier.predict(roi)[0]
                maxindex = int(np.argmax(prediction))
                finalout = emotion_dict[maxindex]
                output = str(finalout)
                st.write(output)
            label_position = (x, y)
            img = cv2.putText(img, output, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
            st.image(img, use_column_width=True)
    except:
        st.write("face is not clear")

    #########################
    imgS = cv2.resize(image,(0,0),None,0.25,0.25)
    imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
    facesCurFrame = face_recognition.face_locations(imgS)
    encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
    for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
        matches = face_recognition.compare_faces(encodeListknown,encodeFace)
        faceDis = face_recognition.face_distance(encodeListknown,encodeFace)
        matchIndex = np.argmin(faceDis)
        if matches[matchIndex]:
            name = classnames[matchIndex]
            st.write(name)
            y1, x2, y2, x1 = faceLoc
            y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
            image = cv2.UMat(image)
            cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
            cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
            cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
            image = cv2.UMat.get(image)
            ##############
            if name:
                if output=='happy':
                    url = "https://kiwi-whispering-plier.glitch.me/update" 
                    
                    data = {
                        'name': name,
                    }
                    response = requests.get(url, params=data)
                     
                    if response.status_code == 200 : 
                        st.write(" data updated on : https://kiwi-whispering-plier.glitch.me" )
                        st.image(image)
                    else :
                        st.write("data not updated ")
                 
                    ##############################
                       
    
                else:
                    st.write("Please smile")
    
    
            else:
                st.write("Failed")