algohunt
requirement
565f883
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [Chongjie Ye]
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
#
# Original file was released under MIT, with the full license text
# available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
#
# This modified file is released under the same license.
from typing import *
from contextlib import contextmanager
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from torchvision import transforms
from PIL import Image
from .base import Pipeline
from . import samplers
from ..modules import sparse as sp
import os
class Hi3DGenPipeline(Pipeline):
def __init__(
self,
models: dict[str, nn.Module] = None,
sparse_structure_sampler: samplers.Sampler = None,
slat_sampler: samplers.Sampler = None,
slat_normalization: dict = None,
image_cond_model: str = None,
):
if models is None:
return
super().__init__(models)
self.sparse_structure_sampler = sparse_structure_sampler
self.slat_sampler = slat_sampler
self.sparse_structure_sampler_params = {}
self.slat_sampler_params = {}
self.slat_normalization = slat_normalization
self._init_image_cond_model(image_cond_model)
@staticmethod
def from_pretrained(path: str) -> "Hi3DGenPipeline":
"""
Load a pretrained model.
Args:
path (str): The path to the model. Can be either local path or a Hugging Face repository.
"""
pipeline = super(Hi3DGenPipeline, Hi3DGenPipeline).from_pretrained(path)
new_pipeline = Hi3DGenPipeline()
new_pipeline.__dict__ = pipeline.__dict__
args = pipeline._pretrained_args
new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args'])
new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']
new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args'])
new_pipeline.slat_sampler_params = args['slat_sampler']['params']
new_pipeline.slat_normalization = args['slat_normalization']
new_pipeline._init_image_cond_model(args['image_cond_model'])
return new_pipeline
def _init_image_cond_model(self, name: str):
"""
Initialize the image conditioning model.
"""
try:
dinov2_model = torch.hub.load(os.path.join(torch.hub.get_dir(), 'facebookresearch_dinov2_main'), name, source='local',pretrained=True)
except:
dinov2_model = torch.hub.load('facebookresearch/dinov2', name, pretrained=True)
dinov2_model.eval()
self.models['image_cond_model'] = dinov2_model
transform = transforms.Compose([
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
self.image_cond_model_transform = transform
def preprocess_image(self, input: Image.Image, resolution=518) -> Image.Image:
"""
Preprocess the input image using BiRefNet for background removal.
Includes padding to maintain aspect ratio when resizing to 518x518.
"""
# if has alpha channel, use it directly
has_alpha = False
if input.mode == 'RGBA':
alpha = np.array(input)[:, :, -1]
if not np.all(alpha == 255):
has_alpha = True
if has_alpha:
output = input
else:
input = input.convert('RGB')
max_size = max(input.size)
scale = min(1, 1024 / max_size)
if scale < 1:
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
# Load BiRefNet model if not already loaded
if getattr(self, 'birefnet_model', None) is None:
self._lazy_load_birefnet()
# Get mask using BiRefNet
mask = self._get_birefnet_mask(input)
# Convert input to RGBA and apply mask
input_rgba = input.convert('RGBA')
input_array = np.array(input_rgba)
input_array[:, :, 3] = mask * 255 # Apply mask to alpha channel
output = Image.fromarray(input_array)
# Process the output image
output_np = np.array(output)
alpha = output_np[:, :, 3]
# Find bounding box of non-transparent pixels
bbox = np.argwhere(alpha > 0.8 * 255)
if len(bbox) == 0: # Handle case where no foreground is detected
return input.convert('RGB')
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
size = int(size * 1.2)
# Calculate and apply crop bbox
bbox = (
int(center[0] - size // 2),
int(center[1] - size // 2),
int(center[0] + size // 2),
int(center[1] + size // 2)
)
# Ensure bbox is within image bounds
bbox = (
max(0, bbox[0]),
max(0, bbox[1]),
min(output.width, bbox[2]),
min(output.height, bbox[3])
)
output = output.crop(bbox)
# Add padding to maintain aspect ratio
width, height = output.size
if width > height:
new_height = width
padding = (width - height) // 2
padded_output = Image.new('RGBA', (width, new_height), (0, 0, 0, 0))
padded_output.paste(output, (0, padding))
else:
new_width = height
padding = (height - width) // 2
padded_output = Image.new('RGBA', (new_width, height), (0, 0, 0, 0))
padded_output.paste(output, (padding, 0))
# Resize padded image to target size
padded_output = padded_output.resize((resolution, resolution), Image.Resampling.LANCZOS)
# Final processing
output = np.array(padded_output).astype(np.float32) / 255
output = np.dstack((
output[:, :, :3] * output[:, :, 3:4], # RGB channels premultiplied by alpha
output[:, :, 3] # Original alpha channel
))
output = Image.fromarray((output * 255).astype(np.uint8), mode='RGBA')
return output
def _lazy_load_birefnet(self):
"""Lazy loading of the BiRefNet model"""
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation, AutoModelForImageSegmentation
self.birefnet_model = AutoModelForImageSegmentation.from_pretrained(
'weights/BiRefNet',
trust_remote_code=True
).to(self.device)
self.birefnet_model.eval()
def _get_birefnet_mask(self, image: Image.Image) -> np.ndarray:
"""Get object mask using BiRefNet"""
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
input_images = transform_image(image).unsqueeze(0).to(self.device)
with torch.no_grad():
preds = self.birefnet_model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
mask_np = np.array(mask)
return (mask_np > 128).astype(np.uint8)
@torch.no_grad()
def encode_image(self, image: Union[torch.Tensor, list[Image.Image]]) -> torch.Tensor:
"""
Encode the image.
Args:
image (Union[torch.Tensor, list[Image.Image]]): The image to encode
Returns:
torch.Tensor: The encoded features.
"""
if isinstance(image, torch.Tensor):
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
elif isinstance(image, list):
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
image = [i.resize((518, 518), Image.LANCZOS) for i in image]
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
image = torch.stack(image).to(self.device)
else:
raise ValueError(f"Unsupported type of image: {type(image)}")
image = self.image_cond_model_transform(image).to(self.device)
features = self.models['image_cond_model'](image, is_training=True)['x_prenorm']
patchtokens = F.layer_norm(features, features.shape[-1:])
return patchtokens
def get_cond(self, image: Union[torch.Tensor, list[Image.Image]]) -> dict:
"""
Get the conditioning information for the model.
Args:
image (Union[torch.Tensor, list[Image.Image]]): The image prompts.
Returns:
dict: The conditioning information
"""
cond = self.encode_image(image)
neg_cond = torch.zeros_like(cond)
return {
'cond': cond,
'neg_cond': neg_cond,
}
def sample_sparse_structure(
self,
cond: dict,
num_samples: int = 1,
sampler_params: dict = {},
) -> torch.Tensor:
"""
Sample sparse structures with the given conditioning.
Args:
cond (dict): The conditioning information.
num_samples (int): The number of samples to generate.
sampler_params (dict): Additional parameters for the sampler.
"""
# Sample occupancy latent
flow_model = self.models['sparse_structure_flow_model']
reso = flow_model.resolution
noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
z_s = self.sparse_structure_sampler.sample(
flow_model,
noise,
**cond,
**sampler_params,
verbose=True
)["samples"]
# Decode occupancy latent
decoder = self.models['sparse_structure_decoder']
coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()
return coords
def decode_slat(
self,
slat: sp.SparseTensor,
formats: List[str] = ['mesh',],
) -> dict:
"""
Decode the structured latent.
Args:
slat (sp.SparseTensor): The structured latent.
formats (List[str]): The formats to decode the structured latent to.
Returns:
dict: The decoded structured latent.
"""
ret = {}
if 'mesh' in formats:
ret['mesh'] = self.models['slat_decoder_mesh'](slat)
return ret
def sample_slat(
self,
cond: dict,
coords: torch.Tensor,
sampler_params: dict = {},
) -> sp.SparseTensor:
"""
Sample structured latent with the given conditioning.
Args:
cond (dict): The conditioning information.
coords (torch.Tensor): The coordinates of the sparse structure.
sampler_params (dict): Additional parameters for the sampler.
"""
# Sample structured latent
flow_model = self.models['slat_flow_model']
noise = sp.SparseTensor(
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
coords=coords,
)
sampler_params = {**self.slat_sampler_params, **sampler_params}
slat = self.slat_sampler.sample(
flow_model,
noise,
**cond,
**sampler_params,
verbose=True
)["samples"]
std = torch.tensor(self.slat_normalization['std'])[None].to(slat.device)
mean = torch.tensor(self.slat_normalization['mean'])[None].to(slat.device)
slat = slat * std + mean
return slat
@torch.no_grad()
def run(
self,
image: Image.Image,
num_samples: int = 1,
seed: int = 42,
sparse_structure_sampler_params: dict = {},
slat_sampler_params: dict = {},
formats: List[str] = ['mesh',],
preprocess_image: bool = True,
) -> dict:
"""
Run the pipeline.
Args:
image (Image.Image): The image prompt.
num_samples (int): The number of samples to generate.
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
preprocess_image (bool): Whether to preprocess the image.
"""
if preprocess_image:
image = self.preprocess_image(image)
cond = self.get_cond([image])
torch.manual_seed(seed)
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
slat = self.sample_slat(cond, coords, slat_sampler_params)
return self.decode_slat(slat, formats)
@contextmanager
def inject_sampler_multi_image(
self,
sampler_name: str,
num_images: int,
num_steps: int,
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
):
"""
Inject a sampler with multiple images as condition.
Args:
sampler_name (str): The name of the sampler to inject.
num_images (int): The number of images to condition on.
num_steps (int): The number of steps to run the sampler for.
"""
sampler = getattr(self, sampler_name)
setattr(sampler, f'_old_inference_model', sampler._inference_model)
if mode == 'stochastic':
if num_images > num_steps:
print(f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. "
"This may lead to performance degradation.\033[0m")
cond_indices = (np.arange(num_steps) % num_images).tolist()
def _new_inference_model(self, model, x_t, t, cond, **kwargs):
cond_idx = cond_indices.pop(0)
cond_i = cond[cond_idx:cond_idx+1]
return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
elif mode =='multidiffusion':
from .samplers import FlowEulerSampler
def _new_inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
if cfg_interval[0] <= t <= cfg_interval[1]:
preds = []
for i in range(len(cond)):
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
pred = sum(preds) / len(preds)
neg_pred = FlowEulerSampler._inference_model(self, model, x_t, t, neg_cond, **kwargs)
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
else:
preds = []
for i in range(len(cond)):
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
pred = sum(preds) / len(preds)
return pred
else:
raise ValueError(f"Unsupported mode: {mode}")
sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))
yield
sampler._inference_model = sampler._old_inference_model
delattr(sampler, f'_old_inference_model')
@torch.no_grad()
def run_multi_image(
self,
images: List[Image.Image],
num_samples: int = 1,
seed: int = 42,
sparse_structure_sampler_params: dict = {},
slat_sampler_params: dict = {},
formats: List[str] = ['mesh', 'radiance_field'],
preprocess_image: bool = True,
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
) -> dict:
"""
Run the pipeline with multiple images as condition
Args:
images (List[Image.Image]): The multi-view images of the assets
num_samples (int): The number of samples to generate.
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
preprocess_image (bool): Whether to preprocess the image.
"""
if preprocess_image:
images = [self.preprocess_image(image) for image in images]
cond = self.get_cond(images)
cond['neg_cond'] = cond['neg_cond'][:1]
torch.manual_seed(seed)
ss_steps = {**self.sparse_structure_sampler_params, **sparse_structure_sampler_params}.get('steps')
with self.inject_sampler_multi_image('sparse_structure_sampler', len(images), ss_steps, mode=mode):
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get('steps')
with self.inject_sampler_multi_image('slat_sampler', len(images), slat_steps, mode=mode):
slat = self.sample_slat(cond, coords, slat_sampler_params)
return self.decode_slat(slat, formats)