sculinebot2025 / gpt4.py
3v324v23's picture
dalle3
a55b31d
# ===東吳大學資料系 2025 年 LINEBOT ===
import base64
import logging
import os
import tempfile
import markdown
from bs4 import BeautifulSoup
from flask import Flask, abort, request, send_from_directory
from linebot.v3 import WebhookHandler
from linebot.v3.exceptions import InvalidSignatureError
from linebot.v3.messaging import (
ApiClient,
Configuration,
ImageMessage,
MessagingApi,
MessagingApiBlob,
ReplyMessageRequest,
TextMessage,
)
from linebot.v3.webhooks import ImageMessageContent, MessageEvent, TextMessageContent
from openai import OpenAI
# === 初始化OpenAI模型 ===
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)
text_system_prompt = "你是一個中文的AI助手,請用繁體中文回答"
# === 先建立第一個對話,之後可以延續這個對話 ===
response = client.responses.create(
model="gpt-4o-mini",
input=[{"role": "system", "content": text_system_prompt}],
)
message_id = response.id
# === 初始設定 ===
static_tmp_path = tempfile.gettempdir()
os.makedirs(static_tmp_path, exist_ok=True)
base_url = os.getenv("SPACE_HOST") # e.g., "your-space-name.hf.space"
# === Flask 應用初始化 ===
app = Flask(__name__)
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
app.logger.setLevel(logging.INFO)
channel_secret = os.environ.get("YOUR_CHANNEL_SECRET")
channel_access_token = os.environ.get("YOUR_CHANNEL_ACCESS_TOKEN")
configuration = Configuration(access_token=channel_access_token)
handler = WebhookHandler(channel_secret)
# === AI Query 包裝 ===
def query(payload, previous_response_id):
second_response = client.responses.create(
model="gpt-4o-mini",
previous_response_id=previous_response_id,
input=[{"role": "user", "content": f"{payload}"}],
)
return second_response
# === 靜態圖檔路由 ===
@app.route("/images/<filename>")
def serve_image(filename):
return send_from_directory(static_tmp_path, filename)
# === LINE Webhook 接收端點 ===
@app.route("/")
def home():
return {"message": "Line Webhook Server"}
@app.route("/", methods=["POST"])
def callback():
signature = request.headers.get("X-Line-Signature")
body = request.get_data(as_text=True)
app.logger.info(f"Request body: {body}")
try:
handler.handle(body, signature)
except InvalidSignatureError:
app.logger.warning("Invalid signature. Please check channel credentials.")
abort(400)
return "OK"
# === 處理文字訊息 ===
@handler.add(MessageEvent, message=TextMessageContent)
def handle_text_message(event):
global message_id
user_input = event.message.text.strip()
if user_input.startswith("AI "):
prompt = user_input[3:].strip()
try:
response = client.images.generate(
model="dall-e-3",
prompt=f"使用下面的文字來畫一幅畫:{prompt}",
size="1024x1024",
quality="standard",
n=1,
)
image_url = response.data[0].url
app.logger.info(image_url)
with ApiClient(configuration) as api_client:
line_bot_api = MessagingApi(api_client)
line_bot_api.reply_message(
ReplyMessageRequest(
reply_token=event.reply_token,
messages=[
ImageMessage(
original_content_url=image_url,
preview_image_url=image_url,
)
],
)
)
except Exception as e:
app.logger.error(f"DALL·E 3 API error: {e}")
with ApiClient(configuration) as api_client:
line_bot_api = MessagingApi(api_client)
line_bot_api.reply_message(
ReplyMessageRequest(
reply_token=event.reply_token,
messages=[TextMessage(text="抱歉,生成圖像時發生錯誤。")],
)
)
else:
with ApiClient(configuration) as api_client:
line_bot_api = MessagingApi(api_client)
response = query(event.message.text, previous_response_id=message_id)
message_id = response.id
html_msg = markdown.markdown(response.output_text)
soup = BeautifulSoup(html_msg, "html.parser")
line_bot_api.reply_message_with_http_info(
ReplyMessageRequest(
reply_token=event.reply_token,
messages=[TextMessage(text=soup.get_text())],
)
)
# === 處理圖片訊息 ===
@handler.add(MessageEvent, message=ImageMessageContent)
def handle_image_message(event):
# === 以下是處理圖片回傳部分 === #
with ApiClient(configuration) as api_client:
blob_api = MessagingApiBlob(api_client)
content = blob_api.get_message_content(message_id=event.message.id)
image_bytes = content
# Step 2:轉成 base64 字串
base64_string = base64.b64encode(image_bytes).decode("utf-8")
# Step 3:組成 OpenAI 的 data URI 格式
data_uri = f"data:image/png;base64,{base64_string}"
app.logger.info(f"Data URI: {data_uri}")
# Step 4:將圖片存到本地端
with tempfile.NamedTemporaryFile(
dir=static_tmp_path, suffix=".jpg", delete=False
) as tf:
tf.write(content)
filename = os.path.basename(tf.name)
image_url = f"https://{base_url}/images/{filename}"
app.logger.info(f"Image URL: {image_url}")
# === 以下是處理解釋圖片部分 === #
response = client.responses.create(
model="gpt-4.1-nano",
input=[
{
"role": "user",
"content": [
{
"type": "input_text",
"text": "describe the image in traditional chinese",
},
{
"type": "input_image",
"image_url": data_uri,
},
],
}
],
)
app.logger.info(response.output_text)
# === 以下是回傳圖片部分 === #
with ApiClient(configuration) as api_client:
line_bot_api = MessagingApi(api_client)
line_bot_api.reply_message(
ReplyMessageRequest(
reply_token=event.reply_token,
messages=[
ImageMessage(
original_content_url=image_url, preview_image_url=image_url
),
TextMessage(text=response.output_text),
],
)
)