open-webui-rag-system / vector_store.py
hugging2021's picture
Update vector_store.py
757d2c1 verified
import os
import argparse
import logging
import time
from collections import defaultdict
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
# PyMuPDF library
try:
import fitz # PyMuPDF
PYMUPDF_AVAILABLE = True
print("✅ PyMuPDF library available")
except ImportError:
PYMUPDF_AVAILABLE = False
print("⚠️ PyMuPDF library is not installed. Install with: pip install PyMuPDF")
# --------------------------------
# Log Output
# --------------------------------
def log(msg):
print(f"[{time.strftime('%H:%M:%S')}] {msg}")
# --------------------------------
# Text Cleaning Function
# --------------------------------
def clean_text(text):
return re.sub(r"[^\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\w\s.,!?\"'()$:\-]", "", text)
def apply_corrections(text):
corrections = {
'º©': 'info', 'Ì': 'of', '½': 'operation', 'Ã': '', '©': '',
'’': "'", '“': '"', 'â€': '"'
}
for k, v in corrections.items():
text = text.replace(k, v)
return text
# --------------------------------
# Load the embedding model
def get_embeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", device="cuda"):
return HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs={'device': device},
encode_kwargs={'normalize_embeddings': True}
)
def build_vector_store_batch(documents, embeddings, save_path="vector_db", batch_size=16):
if not documents:
raise ValueError("No documents found. Check if documents are loaded correctly.")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
# Split into batches
batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_size)]
metadata_batches = [metadatas[i:i + batch_size] for i in range(0, len(metadatas), batch_size)]
print(f"Processing {len(batches)} batches with size {batch_size}")
print(f"Initializing vector store with batch 1/{len(batches)}")
# Use from_documents instead of from_texts (to prevent length issues)
first_docs = [
Document(page_content=text, metadata=meta)
for text, meta in zip(batches[0], metadata_batches[0])
]
vectorstore = FAISS.from_documents(first_docs, embeddings)
# Add remaining batches
for i in tqdm(range(1, len(batches)), desc="Processing batches"):
try:
docs_batch = [
Document(page_content=text, metadata=meta)
for text, meta in zip(batches[i], metadata_batches[i])
]
vectorstore.add_documents(docs_batch)
if i % 10 == 0:
temp_save_path = f"{save_path}_temp"
os.makedirs(os.path.dirname(temp_save_path) if os.path.dirname(temp_save_path) else '.', exist_ok=True)
vectorstore.save_local(temp_save_path)
print(f"Temporary vector store saved to {temp_save_path} after batch {i}")
except Exception as e:
print(f"Error processing batch {i}: {e}")
error_save_path = f"{save_path}_error_at_batch_{i}"
os.makedirs(os.path.dirname(error_save_path) if os.path.dirname(error_save_path) else '.', exist_ok=True)
vectorstore.save_local(error_save_path)
print(f"Partial vector store saved to {error_save_path}")
raise
os.makedirs(os.path.dirname(save_path) if os.path.dirname(save_path) else '.', exist_ok=True)
vectorstore.save_local(save_path)
print(f"Vector store saved to {save_path}")
return vectorstore
def load_vector_store(embeddings, load_path="vector_db"):
if not os.path.exists(load_path):
raise FileNotFoundError(f"Cannot find vector store: {load_path}")
return FAISS.load_local(load_path, embeddings, allow_dangerous_deserialization=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Builds a vector store")
parser.add_argument("--folder", type=str, default="dataset", help="Path to the folder containing the documents")
parser.add_argument("--save_path", type=str, default="vector_db", help="Path to save the vector store")
parser.add_argument("--batch_size", type=int, default=16, help="Batch size")
parser.add_argument("--model_name", type=str, default="sentence-transformers/all-MiniLM-L6-v2", help="Name of the embedding model")
parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device to use ('cuda' or 'cpu')")
args = parser.parse_args()
# Import the document processing module
from document_processor import load_documents, split_documents
# Load and split documents
documents = load_documents(args.folder)
chunks = split_documents(documents, chunk_size=800, chunk_overlap=100)
# Load the embedding model
embeddings = get_embeddings(model_name=args.model_name, device=args.device)
# Build the vector store
build_vector_store_batch(chunks, embeddings, args.save_path, args.batch_size)