JAX-IK / app.py
hvoss-techfak's picture
finished for virtual agent. URDF robot still buggy.
07c6bcc
import logging, faulthandler, sys, time, tempfile, os, requests, zipfile, io, gc, threading, psutil, json, configargparse
faulthandler.enable()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("jax_ik_server")
def _excepthook(t, v, tb):
logger.exception("Uncaught exception", exc_info=(t, v, tb))
sys.excepthook = _excepthook
# Environment (CPU only)
os.environ['JAX_PLATFORMS'] = 'cpu'
os.environ['CUDA_VISIBLE_DEVICES'] = ''
import jax
jax.config.update("jax_default_device", "cpu")
import numpy as np
from fastapi import FastAPI, Request, Response
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from starlette.responses import FileResponse, JSONResponse
from jax_ik.helper import deform_mesh, load_mesh_data_from_gltf, load_mesh_data_from_urdf
from jax_ik.hand_specification import HandSpecification
from jax_ik.smplx_statics import left_arm_bounds_dict, right_arm_bounds_dict, complete_full_body_bounds_dict
from jax_ik.ik import InverseKinematicsSolver
from jax_ik.objectives import (
BoneZeroRotationObj,
CombinedDerivativeObj,
DistanceObjTraj,
SphereCollisionPenaltyObjTraj,
)
def download_and_setup_files():
os.makedirs("files", exist_ok=True)
# Pepper
pepper_dir = "files/pepper_description-master"
if not os.path.isdir(pepper_dir):
logger.info("Downloading Pepper model...")
try:
r = requests.get("https://uni-bielefeld.sciebo.de/s/98Sy5s143XgNntb/download", stream=True); r.raise_for_status()
with zipfile.ZipFile(io.BytesIO(r.content)) as z: z.extractall("files/")
except Exception as e:
logger.warning(f"Pepper download failed: {e}")
# SMPLX
smplx_file = "files/smplx.glb"
if not os.path.isfile(smplx_file):
logger.info("Downloading SMPLX model...")
try:
r = requests.get("https://uni-bielefeld.sciebo.de/s/B5StwQdiR4DW5mc/download"); r.raise_for_status()
open(smplx_file, "wb").write(r.content)
except Exception as e:
logger.warning(f"SMPLX download failed: {e}")
class IKServer:
def __init__(self, args):
self.args = args
self.solve_lock = threading.Lock()
self.process = psutil.Process(os.getpid())
# Caches
self.solver_cache = {}
self.urdf_solver_cache = {}
self.max_cache_size = 5
self.cache_access_order = []
self.urdf_cache_access_order = []
# Animation buffers
self.animation_frames_agent = []
self.animation_frames_urdf = []
# FastAPI
self.app = FastAPI()
self.app.add_middleware(
CORSMiddleware,
allow_origins=["*"], allow_credentials=True,
allow_methods=["*"], allow_headers=["*"]
)
os.makedirs("static", exist_ok=True)
os.makedirs("files", exist_ok=True)
self.app.mount("/static", StaticFiles(directory="static"), name="static")
self.app.mount("/files", StaticFiles(directory="files"), name="files")
# Init models (once)
self._init_agent()
self._setup_agent_objectives()
self._init_urdf()
self._setup_urdf_objectives()
# Cleanup tracking
self.last_cleanup_time = time.time()
self.cleanup_interval = 30
self.agent_solve_counter = 0 # added
self.urdf_solve_counter = 0 # added
self._register_routes()
logger.info("Server ready.")
# ---------- Cache ----------
def _evict_lru(self, is_urdf=False):
cache = self.urdf_solver_cache if is_urdf else self.solver_cache
order = self.urdf_cache_access_order if is_urdf else self.cache_access_order
if not order: return
key = order.pop(0)
cache.pop(key, None)
gc.collect()
def _cache_key(self, bones): return tuple(sorted(bones))
def _get_solver(self, bones, is_urdf=False):
key = self._cache_key(bones)
cache = self.urdf_solver_cache if is_urdf else self.solver_cache
order = self.urdf_cache_access_order if is_urdf else self.cache_access_order
if key in cache:
if key in order: order.remove(key)
order.append(key)
return cache[key]
if len(cache) >= self.max_cache_size:
self._evict_lru(is_urdf)
if is_urdf:
solver = InverseKinematicsSolver(
model_file=self.urdf_file,
controlled_bones=bones,
bounds=None,
threshold=self.args.threshold,
num_steps=self.args.num_steps,
compute_sdf=False,
)
else:
bounds = []
for b in bones:
if b in self.bounds_dict:
lower, upper = self.bounds_dict[b]
bounds.extend(list(zip(lower, upper)))
else:
bounds.extend([(-90, 90)] * 3)
solver = InverseKinematicsSolver(
model_file=self.args.gltf_file,
controlled_bones=bones,
bounds=bounds,
threshold=self.args.threshold,
num_steps=self.args.num_steps,
compute_sdf=False,
)
cache[key] = solver
order.append(key)
return solver
# ---------- Initialization ----------
def _init_agent(self):
basic = InverseKinematicsSolver(
model_file=self.args.gltf_file,
controlled_bones=["left_collar"],
bounds=[(-90,90)]*3,
threshold=self.args.threshold,
num_steps=self.args.num_steps,
compute_sdf=False,
)
self.available_bones = basic.fk_solver.bone_names
self.bounds_dict = complete_full_body_bounds_dict
if self.args.hand == "left":
self.default_controlled_bones = list(left_arm_bounds_dict.keys())
self.default_end_effector = "left_index3"
else:
self.default_controlled_bones = list(right_arm_bounds_dict.keys())
self.default_end_effector = "right_index3"
self.selectable_bones = [b for b in self.available_bones if b in self.bounds_dict]
self.current_controlled_bones = self.default_controlled_bones.copy()
self.current_end_effector = self.default_end_effector
self.solver = self._get_solver(self.current_controlled_bones, is_urdf=False)
self.initial_rotations = np.zeros(len(self.solver.controlled_bones) * 3, dtype=np.float32)
self.best_angles = self.initial_rotations.copy()
self.mesh_data = load_mesh_data_from_gltf(self.args.gltf_file, self.solver.fk_solver)
self.animation_frames_agent = self._frames_from_angles([self.initial_rotations], False)
def _init_urdf(self):
self.urdf_file = "files/pepper_description-master/urdf/pepper.urdf"
basic = InverseKinematicsSolver(
model_file=self.urdf_file,
controlled_bones=["LShoulder"],
bounds=None,
threshold=self.args.threshold,
num_steps=self.args.num_steps,
compute_sdf=False,
)
self.urdf_available_bones = basic.fk_solver.bone_names
self.urdf_default_controlled_bones = ["LShoulder","LBicep","LElbow","LForeArm","l_wrist"]
self.urdf_default_end_effector = "LFinger13_link"
self.urdf_selectable_bones = list(self.urdf_available_bones)
self.urdf_current_controlled_bones = self.urdf_default_controlled_bones.copy()
self.urdf_current_end_effector = self.urdf_default_end_effector
self.urdf_solver = self._get_solver(self.urdf_current_controlled_bones, is_urdf=True)
self.urdf_initial_rotations = np.zeros(len(self.urdf_solver.controlled_bones) * 3, dtype=np.float32)
self.urdf_best_angles = self.urdf_initial_rotations.copy()
self.urdf_mesh_data = load_mesh_data_from_urdf(self.urdf_file, self.urdf_solver.fk_solver)
self.animation_frames_urdf = self._frames_from_angles([self.urdf_initial_rotations], True)
# ---------- Objectives ----------
def _setup_agent_objectives(self):
self.distance_obj = DistanceObjTraj(
target_points=np.array([0.0,0.2,0.35]),
bone_name=self.current_end_effector,
use_head=True,
weight=1.0,
)
self.collision_obj = SphereCollisionPenaltyObjTraj(
{"center":[0.1,0.0,0.35],"radius":0.1},
min_clearance=0.0,
weight=1.0,
)
def _setup_urdf_objectives(self):
self.urdf_distance_obj = DistanceObjTraj(
target_points=np.array([0.3,0.3,0.35]),
bone_name=self.urdf_current_end_effector,
use_head=True,
weight=1.0,
)
self.urdf_collision_obj = SphereCollisionPenaltyObjTraj(
{"center":[0.2,0.0,0.35],"radius":0.1},
min_clearance=0.0,
weight=1.0,
)
# ---------- Configuration ----------
def configure_agent(self, bones, eff):
if not bones: bones = self.default_controlled_bones
if eff not in self.available_bones: eff = self.default_end_effector
changed = bones != self.current_controlled_bones or eff != self.current_end_effector
if bones != self.current_controlled_bones:
self.current_controlled_bones = bones
self.solver = self._get_solver(bones, is_urdf=False)
self.initial_rotations = np.zeros(len(self.solver.controlled_bones)*3, dtype=np.float32)
self.best_angles = self.initial_rotations.copy()
if eff != self.current_end_effector:
self.current_end_effector = eff
if changed:
self._setup_agent_objectives()
return {"controlled_bones": self.current_controlled_bones, "end_effector": self.current_end_effector}
def configure_urdf(self, bones, eff):
if not bones: bones = self.urdf_default_controlled_bones
if eff not in self.urdf_available_bones: eff = self.urdf_default_end_effector
changed = bones != self.urdf_current_controlled_bones or eff != self.urdf_current_end_effector
if bones != self.urdf_current_controlled_bones:
self.urdf_current_controlled_bones = bones
self.urdf_solver = self._get_solver(bones, is_urdf=True)
self.urdf_initial_rotations = np.zeros(len(self.urdf_solver.controlled_bones)*3, dtype=np.float32)
self.urdf_best_angles = self.urdf_initial_rotations.copy()
if eff != self.urdf_current_end_effector:
self.urdf_current_end_effector = eff
if changed:
self._setup_urdf_objectives()
return {"controlled_bones": self.urdf_current_controlled_bones, "end_effector": self.urdf_current_end_effector}
# ---------- Objectives build ----------
def _build_agent_objectives(self, payload):
tgt = np.array(payload.get("target",[0.0,0.2,0.35]))
self.distance_obj.update_params({"bone_name": self.current_end_effector, "target_points": tgt, "weight": float(payload.get("distance_weight",1.0))})
self.collision_obj.update_params({"weight": float(payload.get("collision_weight",1.0))})
subpoints = int(payload.get("subpoints",1))
mandatory, optional = [], []
if payload.get("distance_enabled", True): mandatory.append(self.distance_obj)
if payload.get("collision_enabled", False): optional.append(self.collision_obj)
if payload.get("bone_zero_enabled", True):
optional.append(BoneZeroRotationObj(weight=float(payload.get("bone_zero_weight",0.05))))
if payload.get("derivative_enabled", True) and subpoints > 1:
optional.append(CombinedDerivativeObj(max_order=3, weights=[float(payload.get("derivative_weight",0.05))]*3))
elif not payload.get("bone_zero_enabled", True) and not payload.get("derivative_enabled", True):
optional.append(BoneZeroRotationObj(weight=0.01))
# Hand spec
hand_shape = payload.get("hand_shape","None")
hand_position = payload.get("hand_position","None")
params = {
"is_pointing": hand_shape=="Pointing",
"is_shaping": hand_shape=="Shaping",
"is_flat": hand_shape=="Flat",
"look_forward": hand_position=="Look Forward",
"look_45_up": hand_position=="Look 45° Up",
"look_45_down": hand_position=="Look 45° Down",
"look_up": hand_position=="Look Up",
"look_down": hand_position=="Look Down",
"look_45_x_downwards": hand_position=="Look 45° X Downwards",
"look_45_x_upwards": hand_position=="Look 45° X Upwards",
"look_x_inward": hand_position=="Look X Inward",
"look_to_body": hand_position=="Look to Body",
"arm_down": hand_position=="Arm Down",
"arm_45_down": hand_position=="Arm 45° Down",
"arm_flat": hand_position=="Arm Flat",
}
if any(params.values()):
spec = HandSpecification(**params)
optional.extend(spec.get_objectives(
left_hand=self.args.hand=="left",
controlled_bones=self.current_controlled_bones,
full_trajectory=subpoints>1,
last_position=True,
weight=0.5,
))
return mandatory, optional, subpoints
def _build_urdf_objectives(self, payload):
tgt = np.array(payload.get("target",[0.3,0.3,0.35]))
self.urdf_distance_obj.update_params({"bone_name": self.urdf_current_end_effector, "target_points": tgt, "weight": float(payload.get("distance_weight",1.0))})
self.urdf_collision_obj.update_params({"weight": float(payload.get("collision_weight",1.0))})
subpoints = int(payload.get("subpoints",1))
mandatory, optional = [], []
if payload.get("distance_enabled", True): mandatory.append(self.urdf_distance_obj)
if payload.get("collision_enabled", False): optional.append(self.urdf_collision_obj)
if payload.get("bone_zero_enabled", True):
optional.append(BoneZeroRotationObj(weight=float(payload.get("bone_zero_weight",0.05))))
if payload.get("derivative_enabled", True) and subpoints > 1:
optional.append(CombinedDerivativeObj(max_order=3, weights=[float(payload.get("derivative_weight",0.05))]*3))
elif not payload.get("bone_zero_enabled", True) and not payload.get("derivative_enabled", True):
optional.append(BoneZeroRotationObj(weight=0.01))
return mandatory, optional, subpoints
# ---------- Solving ----------
def _frames_from_angles(self, angles_seq, is_urdf):
frames = []
for ang in angles_seq:
if is_urdf:
verts = deform_mesh(ang, self.urdf_solver.fk_solver, self.urdf_mesh_data)
faces = self.urdf_mesh_data["faces"]
else:
verts = deform_mesh(ang, self.solver.fk_solver, self.mesh_data)
faces = self.mesh_data["faces"]
frames.append({"vertices": verts.tolist(), "faces": faces.tolist()})
return frames
def solve_agent(self, payload):
mand, opt, sub = self._build_agent_objectives(payload)
start = time.time()
best_angles, obj_val, steps = self.solver.solve(
initial_rotations=self.initial_rotations,
learning_rate=self.args.learning_rate,
mandatory_objective_functions=tuple(mand),
optional_objective_functions=tuple(opt),
ik_points=sub,
verbose=False,
)
self.best_angles = best_angles[-1].copy()
self.initial_rotations = self.best_angles.copy()
self.animation_frames_agent = self._frames_from_angles(best_angles, False)
print(f"Solved in {time.time()-start:.2f}s over {steps} steps. Obj: {obj_val:.6f}")
self.agent_solve_counter += 1 # added
return {
"solve_time": time.time()-start,
"iterations": steps,
"objective": obj_val,
"frames": len(self.animation_frames_agent),
"solve_id": self.agent_solve_counter, # added
}
def solve_urdf(self, payload):
mand, opt, sub = self._build_urdf_objectives(payload)
start = time.time()
best_angles, obj_val, steps = self.urdf_solver.solve(
initial_rotations=self.urdf_initial_rotations,
learning_rate=self.args.learning_rate,
mandatory_objective_functions=tuple(mand),
optional_objective_functions=tuple(opt),
ik_points=sub,
verbose=False,
)
self.urdf_best_angles = best_angles[-1].copy()
self.urdf_initial_rotations = self.urdf_best_angles.copy()
self.animation_frames_urdf = self._frames_from_angles(best_angles, True)
print(
f"Solved in {time.time() - start:.2f}s over {steps} steps. Obj: {obj_val:.6f}"
)
self.urdf_solve_counter += 1 # added
return {
"solve_time": time.time()-start,
"iterations": steps,
"objective": obj_val,
"frames": len(self.animation_frames_urdf),
"solve_id": self.urdf_solve_counter, # added
}
# ---------- Housekeeping ----------
def _cleanup(self):
now = time.time()
if now - self.last_cleanup_time < self.cleanup_interval: return
gc.collect()
self.last_cleanup_time = now
# ---------- API ----------
def _register_routes(self):
@self.app.get("/")
def index(): return FileResponse("static/index.html")
@self.app.get("/threejs_viewer")
def legacy(): return FileResponse("static/index.html")
@self.app.get("/animation")
def animation(request: Request):
model = request.query_params.get("model","agent").lower()
data = self.animation_frames_urdf if model == "pepper" else self.animation_frames_agent
return Response(content=json.dumps(data), media_type="application/json")
@self.app.get("/config")
def cfg(model: str = "agent"):
if model.lower() == "pepper":
return {
"model":"pepper",
"available_bones": self.urdf_available_bones,
"selectable_bones": self.urdf_selectable_bones,
"default_controlled_bones": self.urdf_current_controlled_bones,
"default_end_effector": self.urdf_current_end_effector,
"end_effector_choices": self.urdf_available_bones,
"hand_shapes": [],
"hand_positions": [],
"max_subpoints": 20, # added
}
return {
"model":"agent",
"available_bones": self.available_bones,
"selectable_bones": self.selectable_bones,
"default_controlled_bones": self.current_controlled_bones,
"default_end_effector": self.current_end_effector,
"end_effector_choices": self.available_bones,
"hand_shapes":["None","Pointing","Shaping","Flat"],
"hand_positions":[
"None","Look Forward","Look 45° Up","Look 45° Down","Look Up","Look Down",
"Look 45° X Downwards","Look 45° X Upwards","Look X Inward","Look to Body",
"Arm Down","Arm 45° Down","Arm Flat"
],
"max_subpoints": 20, # added
}
@self.app.post("/configure")
async def configure(request: Request):
payload = await request.json()
model = payload.get("model","agent").lower()
if model == "pepper":
cfg = self.configure_urdf(payload.get("controlled_bones", []), payload.get("end_effector"))
else:
cfg = self.configure_agent(payload.get("controlled_bones", []), payload.get("end_effector"))
return JSONResponse({"status":"ok","config":cfg})
@self.app.post("/solve")
async def solve(request: Request):
payload = await request.json()
model = payload.get("model","agent").lower()
return_mode = payload.get("frames_mode", "auto")
self._cleanup()
with self.solve_lock:
try:
if model == "pepper":
self.configure_urdf(payload.get("controlled_bones", []),
payload.get("end_effector", self.urdf_current_end_effector))
result = self.solve_urdf(payload); result["model"]="pepper"
if return_mode == "all" or (return_mode == "auto" and payload.get("subpoints",1) > 1):
frames = list(self.animation_frames_urdf) # ensure fresh list
else:
frames = [self.animation_frames_urdf[-1].copy()] if hasattr(self.animation_frames_urdf[-1],'copy') else [dict(self.animation_frames_urdf[-1])]
result["frames_data"] = frames
else:
self.configure_agent(payload.get("controlled_bones", []),
payload.get("end_effector", self.current_end_effector))
result = self.solve_agent(payload); result["model"]="agent"
if return_mode == "all" or (return_mode == "auto" and payload.get("subpoints",1) > 1):
frames = list(self.animation_frames_agent)
else:
frames = [self.animation_frames_agent[-1].copy()] if hasattr(self.animation_frames_agent[-1],'copy') else [dict(self.animation_frames_agent[-1])]
result["frames_data"] = frames
return JSONResponse({"status":"ok","result":result})
except Exception as e:
logger.exception("Solve failed")
return JSONResponse({"status":"error","message":str(e)}, status_code=500)
@self.app.get("/health")
def health():
return {
"status":"ok",
"agent_frames": len(self.animation_frames_agent),
"urdf_frames": len(self.animation_frames_urdf),
"cache_agent": len(self.solver_cache),
"cache_urdf": len(self.urdf_solver_cache),
}
@self.app.get("/favicon.ico")
def favicon(): return Response(status_code=204)
# ---------- Main ----------
def main():
parser = configargparse.ArgumentParser(description="Inverse Kinematics Solver - Three.js Web UI", default_config_files=["config.ini"])
parser.add("--gltf_file", type=str, default="files/smplx.glb")
parser.add("--hand", type=str, choices=["left","right"], default="left")
parser.add("--threshold", type=float, default=0.0001)
parser.add("--num_steps", type=int, default=100)
parser.add("--learning_rate", type=float, default=0.2)
parser.add("--subpoints", type=int, default=1)
parser.add("--api_port", type=int, default=17861)
args = parser.parse_args()
download_and_setup_files()
srv = IKServer(args)
import uvicorn
uvicorn.run(srv.app, host="0.0.0.0", port=args.api_port)
if __name__ == "__main__":
main()