Spaces:
Sleeping
Sleeping
import torch | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
from diffusers.utils import export_to_video | |
import gradio as gr | |
# Load the DiffusionPipeline | |
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() | |
def generate_video(prompt): | |
video_frames = pipe(prompt, num_inference_steps=25).frames | |
video_path = export_to_video(video_frames[0]) | |
return video_path | |
# Create the Gradio Interface | |
interface = gr.Interface( | |
fn=generate_video, | |
inputs=gr.Textbox(label="Enter your prompt"), | |
outputs=gr.Video(label="Generated Video"), | |
title="Text-to-Video Generator", | |
description="Enter a prompt to generate a video using diffusion models." | |
) | |
# Launch the Gradio app | |
interface.launch() |