Spaces:
Running
Running
import gradio as gr | |
import requests | |
# import json | |
import os | |
from typing import Optional | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
# 后端API配置(可配置化) | |
BACKEND_URL = os.getenv("BACKEND_URL", "http://your-backend-server:5000") | |
API_ENDPOINTS = { | |
"submit_task": f"{BACKEND_URL}/api/v1/submit", | |
"query_status": f"{BACKEND_URL}/api/v1/status", | |
"get_result": f"{BACKEND_URL}/api/v1/result" | |
} | |
# 全局缓存原始图像 | |
#ORIGINAL_IMAGE = cv2.imread("scene.png") | |
ORIGINAL_IMAGE = np.array(Image.open("scene.png").convert("RGB")) | |
if ORIGINAL_IMAGE is None: | |
raise RuntimeError("❌ 无法加载 scene.png,请确保图片文件与 app.py 同目录,并命名正确。") | |
# 模拟场景配置 | |
SCENE_CONFIGS = { | |
"default_desk": { | |
"description": "标准实验桌", | |
"objects": ["番茄酱", "盐瓶", "餐刀", "杯子"] | |
}, | |
"cluttered_desk": { | |
"description": "杂乱桌面场景", | |
"objects": ["书本", "笔", "手机", "水杯", "零食袋"] | |
}, | |
"industrial_table": { | |
"description": "工业工作台", | |
"objects": ["扳手", "螺丝", "电路板", "润滑剂"] | |
} | |
} | |
# 可用模型列表 | |
MODEL_CHOICES = [ | |
"GRManipulation-v1.0", | |
"GR00T-N1", | |
"GR00T-1.5", | |
"Pi0", | |
"DP+CLIP", | |
"AcT+CLIP" | |
] | |
def image_to_position(image: np.ndarray, evt: gr.SelectData) -> tuple[np.ndarray, str]: | |
h, w = image.shape[:2] | |
px, py = evt.index # 点击位置 (x, y) | |
# 坐标转换 | |
x = (px / w) * 2 - 1 | |
y = -((py / h) * 2 - 1) | |
z = 0.1 | |
coord_str = f"{x:.2f}, {y:.2f}, {z:.2f}" | |
# 使用原始图像绘制新图(保证每次只有一个点) | |
marked = ORIGINAL_IMAGE.copy() | |
cv2.circle(marked, center=(px, py), radius=8, color=(255, 0, 0), thickness=-1) | |
return marked, coord_str | |
def submit_to_backend( | |
scene: str, | |
prompt: str, | |
start_position: str, | |
max_steps: int = 100, | |
visualize: bool = True | |
) -> dict: | |
""" | |
提交任务到后端API | |
""" | |
payload = { | |
"scene_config": scene, | |
"prompt": prompt, | |
"start_position": start_position, | |
"params": { | |
"max_steps": max_steps, | |
"visualize": visualize | |
}, | |
"metadata": { | |
"submit_from": "gradio_ui" | |
} | |
} | |
try: | |
response = requests.post( | |
API_ENDPOINTS["submit_task"], | |
json=payload, | |
timeout=10 | |
) | |
return response.json() | |
except Exception as e: | |
return {"status": "error", "message": str(e)} | |
def get_task_status(task_id: str) -> dict: | |
""" | |
查询任务状态 | |
""" | |
try: | |
response = requests.get( | |
f"{API_ENDPOINTS['query_status']}/{task_id}", | |
timeout=5 | |
) | |
return response.json() | |
except Exception as e: | |
return {"status": "error", "message": str(e)} | |
def get_task_result(task_id: str) -> Optional[dict]: | |
""" | |
获取任务结果 | |
""" | |
try: | |
response = requests.get( | |
f"{API_ENDPOINTS['get_result']}/{task_id}", | |
timeout=5 | |
) | |
return response.json() | |
except Exception as e: | |
print(f"Error fetching result: {e}") | |
return None | |
def run_simulation( | |
scene: str, | |
prompt: str, | |
model: str, | |
progress=gr.Progress() | |
) -> dict: | |
""" | |
运行仿真的主函数 | |
""" | |
# 提交任务到后端 | |
progress(0.1, desc="提交任务到后端...") | |
submission = submit_to_backend(scene, prompt, model) | |
if submission.get("status") != "success": | |
raise gr.Error(f"提交失败: {submission.get('message', '未知错误')}") | |
task_id = submission["task_id"] | |
progress(0.3, desc="任务已提交,等待执行...") | |
# 轮询任务状态 | |
max_checks = 20 | |
for i in range(max_checks): | |
status = get_task_status(task_id) | |
if status.get("status") == "completed": | |
progress(0.9, desc="获取结果...") | |
result = get_task_result(task_id) | |
if result: | |
return { | |
"video": result.get("video_path"), | |
"metrics": result.get("metrics"), | |
"log": result.get("log") | |
} | |
else: | |
raise gr.Error("获取结果失败") | |
elif status.get("status") == "failed": | |
raise gr.Error(f"任务执行失败: {status.get('message')}") | |
progress(0.3 + 0.6 * (i/max_checks), desc=f"任务执行中...({status.get('progress', 0)}%)") | |
raise gr.Error("任务执行超时") | |
# 自定义CSS样式 | |
custom_css = """ | |
#simulation-panel { | |
border-radius: 8px; | |
padding: 20px; | |
background: #f9f9f9; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
#result-panel { | |
border-radius: 8px; | |
padding: 20px; | |
background: #f0f8ff; | |
} | |
.dark #simulation-panel { background: #2a2a2a; } | |
.dark #result-panel { background: #1a2a3a; } | |
/* 强力隐藏图像组件底部工具栏 */ | |
.gr-image .absolute.bottom-0, | |
.gr-image .flex.justify-between.items-center.px-2.pb-2 { | |
display: none !important; | |
} | |
""" | |
with gr.Blocks(title="机器人导航仿真系统", css=custom_css) as demo: | |
# 标题和描述 | |
gr.Markdown(""" | |
# 🧭 GRNavigation 机器人导航仿真平台 | |
### 基于 GRNavigation 框架的多场景路径规划与自主导航训练 | |
""") | |
with gr.Row(): | |
# 左侧控制面板 | |
with gr.Column(elem_id="simulation-panel"): | |
gr.Markdown("### 仿真任务配置") | |
# 场景选择 | |
scene_dropdown = gr.Dropdown( | |
label="选择导航环境", | |
choices=list(SCENE_CONFIGS.keys()), | |
value="default_desk", | |
interactive=True | |
) | |
def update_scene_desc(scene): | |
config = SCENE_CONFIGS.get(scene, {}) | |
desc = config.get("description", "无描述") | |
objects = "、".join(config.get("objects", [])) | |
return f"**{desc}** \n包含物体: {objects}" | |
# 场景描述预览 | |
scene_description = gr.Markdown("") | |
# 动态更新场景描述(函数不变) | |
# 操作指令输入 | |
prompt_input = gr.Textbox( | |
label="导航指令(自然语言)", | |
placeholder="例如:'从桌角出发,穿过障碍物,前往水杯位置'", | |
lines=2, | |
max_lines=4 | |
) | |
# 起始坐标输入 | |
start_pos_input = gr.Textbox( | |
label="起始位置坐标 (x, y, z)", | |
placeholder="例如:0.0, 0.0, 0.2", | |
lines=1 | |
) | |
# 高级参数 | |
with gr.Accordion("高级设置", open=False): | |
max_steps = gr.Slider( | |
minimum=50, | |
maximum=500, | |
value=100, | |
step=10, | |
label="最大导航步数" | |
) | |
visualize = gr.Checkbox( | |
value=True, | |
label="显示可视化界面(Isaac Sim)" | |
) | |
# 提交按钮 | |
submit_btn = gr.Button("开始导航仿真", variant="primary") | |
# 右侧结果面板 | |
with gr.Column(elem_id="result-panel"): | |
gr.Markdown("### 仿真结果预览") | |
# 视频输出 | |
video_output = gr.Video( | |
label="导航过程回放", | |
interactive=False, | |
format="mp4" | |
) | |
# 场景俯视图图像(点击获取起点) | |
scene_image = gr.Image( | |
value="/scene.png", # 占位图路径 | |
label="点击选择起点位置(场景俯视图)", | |
type="numpy", # 获取坐标 | |
interactive=True, | |
height=300, | |
show_share_button=False # ✅ 关闭底部按钮(上传、拍照、复制) | |
) | |
# ✅ 添加“刷新场景图像”按钮 | |
def reload_scene_image(): | |
new_image = np.array(Image.open("scene.png").convert("RGB")) | |
global ORIGINAL_IMAGE | |
ORIGINAL_IMAGE = new_image | |
return new_image | |
refresh_btn = gr.Button("🔁 刷新场景图像") | |
refresh_btn.click(fn=reload_scene_image, outputs=scene_image) | |
# 指标展示 | |
metrics_output = gr.JSON( | |
label="导航性能指标", | |
visible=False | |
) | |
# 日志输出 | |
log_output = gr.Textbox( | |
label="任务执行日志", | |
visible=False, | |
lines=10, | |
max_lines=20 | |
) | |
# 示例任务 | |
gr.Examples( | |
examples=[ | |
["default_desk", "从桌角出发,前往番茄酱附近", "0.0, 0.0, 0.1"], | |
["cluttered_desk", "从水杯出发,移动到手机旁", "1.0, -0.5, 0.0"], | |
["industrial_table", "避开扳手,从台边移动到润滑剂", "0.5, 0.2, 0.0"] | |
], | |
inputs=[scene_dropdown, prompt_input, start_pos_input], | |
label="导航任务示例" | |
) | |
# 提交处理逻辑 | |
submit_btn.click( | |
fn=run_simulation, | |
inputs=[scene_dropdown, prompt_input, start_pos_input], | |
outputs=[video_output, metrics_output, log_output], | |
api_name="run_simulation" | |
) | |
# 初始场景文字描述 | |
demo.load( | |
fn=lambda: (update_scene_desc("default_desk"), reload_scene_image()), | |
outputs=[scene_description, scene_image] | |
) | |
# ✅ 添加点击图片 → 自动设置起始位置 | |
scene_image.select( | |
fn=image_to_position, | |
inputs=[scene_image], | |
outputs=[scene_image, start_pos_input] | |
) | |
# 启动应用 | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True, debug=True) |