ReCamMaster / diffsynth /models /hunyuan_video_dit.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
42 kB
import torch
from .sd3_dit import TimestepEmbeddings, RMSNorm
from .utils import init_weights_on_device
from einops import rearrange, repeat
from tqdm import tqdm
from typing import Union, Tuple, List
from .utils import hash_state_dict_keys
def HunyuanVideoRope(latents):
def _to_tuple(x, dim=2):
if isinstance(x, int):
return (x,) * dim
elif len(x) == dim:
return x
else:
raise ValueError(f"Expected length {dim} or int, but got {x}")
def get_meshgrid_nd(start, *args, dim=2):
"""
Get n-D meshgrid with start, stop and num.
Args:
start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop,
step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num
should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in
n-tuples.
*args: See above.
dim (int): Dimension of the meshgrid. Defaults to 2.
Returns:
grid (np.ndarray): [dim, ...]
"""
if len(args) == 0:
# start is grid_size
num = _to_tuple(start, dim=dim)
start = (0,) * dim
stop = num
elif len(args) == 1:
# start is start, args[0] is stop, step is 1
start = _to_tuple(start, dim=dim)
stop = _to_tuple(args[0], dim=dim)
num = [stop[i] - start[i] for i in range(dim)]
elif len(args) == 2:
# start is start, args[0] is stop, args[1] is num
start = _to_tuple(start, dim=dim) # Left-Top eg: 12,0
stop = _to_tuple(args[0], dim=dim) # Right-Bottom eg: 20,32
num = _to_tuple(args[1], dim=dim) # Target Size eg: 32,124
else:
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
# PyTorch implement of np.linspace(start[i], stop[i], num[i], endpoint=False)
axis_grid = []
for i in range(dim):
a, b, n = start[i], stop[i], num[i]
g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n]
axis_grid.append(g)
grid = torch.meshgrid(*axis_grid, indexing="ij") # dim x [W, H, D]
grid = torch.stack(grid, dim=0) # [dim, W, H, D]
return grid
def get_1d_rotary_pos_embed(
dim: int,
pos: Union[torch.FloatTensor, int],
theta: float = 10000.0,
use_real: bool = False,
theta_rescale_factor: float = 1.0,
interpolation_factor: float = 1.0,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Precompute the frequency tensor for complex exponential (cis) with given dimensions.
(Note: `cis` means `cos + i * sin`, where i is the imaginary unit.)
This function calculates a frequency tensor with complex exponential using the given dimension 'dim'
and the end index 'end'. The 'theta' parameter scales the frequencies.
The returned tensor contains complex values in complex64 data type.
Args:
dim (int): Dimension of the frequency tensor.
pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
use_real (bool, optional): If True, return real part and imaginary part separately.
Otherwise, return complex numbers.
theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0.
Returns:
freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2]
freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D]
"""
if isinstance(pos, int):
pos = torch.arange(pos).float()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
if theta_rescale_factor != 1.0:
theta *= theta_rescale_factor ** (dim / (dim - 2))
freqs = 1.0 / (
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
) # [D/2]
# assert interpolation_factor == 1.0, f"interpolation_factor: {interpolation_factor}"
freqs = torch.outer(pos * interpolation_factor, freqs) # [S, D/2]
if use_real:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
return freqs_cos, freqs_sin
else:
freqs_cis = torch.polar(
torch.ones_like(freqs), freqs
) # complex64 # [S, D/2]
return freqs_cis
def get_nd_rotary_pos_embed(
rope_dim_list,
start,
*args,
theta=10000.0,
use_real=False,
theta_rescale_factor: Union[float, List[float]] = 1.0,
interpolation_factor: Union[float, List[float]] = 1.0,
):
"""
This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure.
Args:
rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n.
sum(rope_dim_list) should equal to head_dim of attention layer.
start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start,
args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num.
*args: See above.
theta (float): Scaling factor for frequency computation. Defaults to 10000.0.
use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers.
Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real
part and an imaginary part separately.
theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0.
Returns:
pos_embed (torch.Tensor): [HW, D/2]
"""
grid = get_meshgrid_nd(
start, *args, dim=len(rope_dim_list)
) # [3, W, H, D] / [2, W, H]
if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float):
theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list)
elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1:
theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list)
assert len(theta_rescale_factor) == len(
rope_dim_list
), "len(theta_rescale_factor) should equal to len(rope_dim_list)"
if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float):
interpolation_factor = [interpolation_factor] * len(rope_dim_list)
elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1:
interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list)
assert len(interpolation_factor) == len(
rope_dim_list
), "len(interpolation_factor) should equal to len(rope_dim_list)"
# use 1/ndim of dimensions to encode grid_axis
embs = []
for i in range(len(rope_dim_list)):
emb = get_1d_rotary_pos_embed(
rope_dim_list[i],
grid[i].reshape(-1),
theta,
use_real=use_real,
theta_rescale_factor=theta_rescale_factor[i],
interpolation_factor=interpolation_factor[i],
) # 2 x [WHD, rope_dim_list[i]]
embs.append(emb)
if use_real:
cos = torch.cat([emb[0] for emb in embs], dim=1) # (WHD, D/2)
sin = torch.cat([emb[1] for emb in embs], dim=1) # (WHD, D/2)
return cos, sin
else:
emb = torch.cat(embs, dim=1) # (WHD, D/2)
return emb
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
[16, 56, 56],
[latents.shape[2], latents.shape[3] // 2, latents.shape[4] // 2],
theta=256,
use_real=True,
theta_rescale_factor=1,
)
return freqs_cos, freqs_sin
class PatchEmbed(torch.nn.Module):
def __init__(self, patch_size=(1, 2, 2), in_channels=16, embed_dim=3072):
super().__init__()
self.proj = torch.nn.Conv3d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2)
return x
class IndividualTokenRefinerBlock(torch.nn.Module):
def __init__(self, hidden_size=3072, num_heads=24):
super().__init__()
self.num_heads = num_heads
self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
self.self_attn_qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
self.self_attn_proj = torch.nn.Linear(hidden_size, hidden_size)
self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
self.mlp = torch.nn.Sequential(
torch.nn.Linear(hidden_size, hidden_size * 4),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size * 4, hidden_size)
)
self.adaLN_modulation = torch.nn.Sequential(
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size * 2, device="cuda", dtype=torch.bfloat16),
)
def forward(self, x, c, attn_mask=None):
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
qkv = self.self_attn_qkv(norm_x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
attn = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
attn = rearrange(attn, "B H L D -> B L (H D)")
x = x + self.self_attn_proj(attn) * gate_msa.unsqueeze(1)
x = x + self.mlp(self.norm2(x)) * gate_mlp.unsqueeze(1)
return x
class SingleTokenRefiner(torch.nn.Module):
def __init__(self, in_channels=4096, hidden_size=3072, depth=2):
super().__init__()
self.input_embedder = torch.nn.Linear(in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbeddings(256, hidden_size, computation_device="cpu")
self.c_embedder = torch.nn.Sequential(
torch.nn.Linear(in_channels, hidden_size),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size)
)
self.blocks = torch.nn.ModuleList([IndividualTokenRefinerBlock(hidden_size=hidden_size) for _ in range(depth)])
def forward(self, x, t, mask=None):
timestep_aware_representations = self.t_embedder(t, dtype=torch.float32)
mask_float = mask.float().unsqueeze(-1)
context_aware_representations = (x * mask_float).sum(dim=1) / mask_float.sum(dim=1)
context_aware_representations = self.c_embedder(context_aware_representations)
c = timestep_aware_representations + context_aware_representations
x = self.input_embedder(x)
mask = mask.to(device=x.device, dtype=torch.bool)
mask = repeat(mask, "B L -> B 1 D L", D=mask.shape[-1])
mask = mask & mask.transpose(2, 3)
mask[:, :, :, 0] = True
for block in self.blocks:
x = block(x, c, mask)
return x
class ModulateDiT(torch.nn.Module):
def __init__(self, hidden_size, factor=6):
super().__init__()
self.act = torch.nn.SiLU()
self.linear = torch.nn.Linear(hidden_size, factor * hidden_size)
def forward(self, x):
return self.linear(self.act(x))
def modulate(x, shift=None, scale=None, tr_shift=None, tr_scale=None, tr_token=None):
if tr_shift is not None:
x_zero = x[:, :tr_token] * (1 + tr_scale.unsqueeze(1)) + tr_shift.unsqueeze(1)
x_orig = x[:, tr_token:] * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
x = torch.concat((x_zero, x_orig), dim=1)
return x
if scale is None and shift is None:
return x
elif shift is None:
return x * (1 + scale.unsqueeze(1))
elif scale is None:
return x + shift.unsqueeze(1)
else:
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def reshape_for_broadcast(
freqs_cis,
x: torch.Tensor,
head_first=False,
):
ndim = x.ndim
assert 0 <= 1 < ndim
if isinstance(freqs_cis, tuple):
# freqs_cis: (cos, sin) in real space
if head_first:
assert freqs_cis[0].shape == (
x.shape[-2],
x.shape[-1],
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
shape = [
d if i == ndim - 2 or i == ndim - 1 else 1
for i, d in enumerate(x.shape)
]
else:
assert freqs_cis[0].shape == (
x.shape[1],
x.shape[-1],
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
else:
# freqs_cis: values in complex space
if head_first:
assert freqs_cis.shape == (
x.shape[-2],
x.shape[-1],
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
shape = [
d if i == ndim - 2 or i == ndim - 1 else 1
for i, d in enumerate(x.shape)
]
else:
assert freqs_cis.shape == (
x.shape[1],
x.shape[-1],
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def rotate_half(x):
x_real, x_imag = (
x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)
) # [B, S, H, D//2]
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis,
head_first: bool = False,
):
xk_out = None
if isinstance(freqs_cis, tuple):
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
cos, sin = cos.to(xq.device), sin.to(xq.device)
# real * cos - imag * sin
# imag * cos + real * sin
xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk)
else:
# view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex)
xq_ = torch.view_as_complex(
xq.float().reshape(*xq.shape[:-1], -1, 2)
) # [B, S, H, D//2]
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(
xq.device
) # [S, D//2] --> [1, S, 1, D//2]
# (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin)
# view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
xk_ = torch.view_as_complex(
xk.float().reshape(*xk.shape[:-1], -1, 2)
) # [B, S, H, D//2]
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
return xq_out, xk_out
def attention(q, k, v):
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = x.transpose(1, 2).flatten(2, 3)
return x
def apply_gate(x, gate, tr_gate=None, tr_token=None):
if tr_gate is not None:
x_zero = x[:, :tr_token] * tr_gate.unsqueeze(1)
x_orig = x[:, tr_token:] * gate.unsqueeze(1)
return torch.concat((x_zero, x_orig), dim=1)
else:
return x * gate.unsqueeze(1)
class MMDoubleStreamBlockComponent(torch.nn.Module):
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
super().__init__()
self.heads_num = heads_num
self.mod = ModulateDiT(hidden_size)
self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.to_out = torch.nn.Linear(hidden_size, hidden_size)
self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.ff = torch.nn.Sequential(
torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size)
)
def forward(self, hidden_states, conditioning, freqs_cis=None, token_replace_vec=None, tr_token=None):
mod1_shift, mod1_scale, mod1_gate, mod2_shift, mod2_scale, mod2_gate = self.mod(conditioning).chunk(6, dim=-1)
if token_replace_vec is not None:
assert tr_token is not None
tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = self.mod(token_replace_vec).chunk(6, dim=-1)
else:
tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None, None, None
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = modulate(norm_hidden_states, shift=mod1_shift, scale=mod1_scale,
tr_shift=tr_mod1_shift, tr_scale=tr_mod1_scale, tr_token=tr_token)
qkv = self.to_qkv(norm_hidden_states)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
q = self.norm_q(q)
k = self.norm_k(k)
if freqs_cis is not None:
q, k = apply_rotary_emb(q, k, freqs_cis, head_first=False)
return (q, k, v), (mod1_gate, mod2_shift, mod2_scale, mod2_gate), (tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate)
def process_ff(self, hidden_states, attn_output, mod, mod_tr=None, tr_token=None):
mod1_gate, mod2_shift, mod2_scale, mod2_gate = mod
if mod_tr is not None:
tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = mod_tr
else:
tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None
hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod1_gate, tr_mod1_gate, tr_token)
x = self.ff(modulate(self.norm2(hidden_states), shift=mod2_shift, scale=mod2_scale, tr_shift=tr_mod2_shift, tr_scale=tr_mod2_scale, tr_token=tr_token))
hidden_states = hidden_states + apply_gate(x, mod2_gate, tr_mod2_gate, tr_token)
return hidden_states
class MMDoubleStreamBlock(torch.nn.Module):
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
super().__init__()
self.component_a = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio)
self.component_b = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio)
def forward(self, hidden_states_a, hidden_states_b, conditioning, freqs_cis, token_replace_vec=None, tr_token=None, split_token=71):
(q_a, k_a, v_a), mod_a, mod_tr = self.component_a(hidden_states_a, conditioning, freqs_cis, token_replace_vec, tr_token)
(q_b, k_b, v_b), mod_b, _ = self.component_b(hidden_states_b, conditioning, freqs_cis=None)
q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous()
k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous()
v_a, v_b = torch.concat([v_a, v_b[:, :split_token]], dim=1), v_b[:, split_token:].contiguous()
attn_output_a = attention(q_a, k_a, v_a)
attn_output_b = attention(q_b, k_b, v_b)
attn_output_a, attn_output_b = attn_output_a[:, :-split_token].contiguous(), torch.concat([attn_output_a[:, -split_token:], attn_output_b], dim=1)
hidden_states_a = self.component_a.process_ff(hidden_states_a, attn_output_a, mod_a, mod_tr, tr_token)
hidden_states_b = self.component_b.process_ff(hidden_states_b, attn_output_b, mod_b)
return hidden_states_a, hidden_states_b
class MMSingleStreamBlockOriginal(torch.nn.Module):
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
super().__init__()
self.hidden_size = hidden_size
self.heads_num = heads_num
self.mlp_hidden_dim = hidden_size * mlp_width_ratio
self.linear1 = torch.nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
self.linear2 = torch.nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.q_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.k_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.pre_norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = torch.nn.GELU(approximate="tanh")
self.modulation = ModulateDiT(hidden_size, factor=3)
def forward(self, x, vec, freqs_cis=None, txt_len=256):
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
q = self.q_norm(q)
k = self.k_norm(k)
q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False)
q = torch.cat((q_a, q_b), dim=1)
k = torch.cat((k_a, k_b), dim=1)
attn_output_a = attention(q[:, :-185].contiguous(), k[:, :-185].contiguous(), v[:, :-185].contiguous())
attn_output_b = attention(q[:, -185:].contiguous(), k[:, -185:].contiguous(), v[:, -185:].contiguous())
attn_output = torch.concat([attn_output_a, attn_output_b], dim=1)
output = self.linear2(torch.cat((attn_output, self.mlp_act(mlp)), 2))
return x + output * mod_gate.unsqueeze(1)
class MMSingleStreamBlock(torch.nn.Module):
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
super().__init__()
self.heads_num = heads_num
self.mod = ModulateDiT(hidden_size, factor=3)
self.norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.to_out = torch.nn.Linear(hidden_size, hidden_size)
self.ff = torch.nn.Sequential(
torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size, bias=False)
)
def forward(self, hidden_states, conditioning, freqs_cis=None, txt_len=256, token_replace_vec=None, tr_token=None, split_token=71):
mod_shift, mod_scale, mod_gate = self.mod(conditioning).chunk(3, dim=-1)
if token_replace_vec is not None:
assert tr_token is not None
tr_mod_shift, tr_mod_scale, tr_mod_gate = self.mod(token_replace_vec).chunk(3, dim=-1)
else:
tr_mod_shift, tr_mod_scale, tr_mod_gate = None, None, None
norm_hidden_states = self.norm(hidden_states)
norm_hidden_states = modulate(norm_hidden_states, shift=mod_shift, scale=mod_scale,
tr_shift=tr_mod_shift, tr_scale=tr_mod_scale, tr_token=tr_token)
qkv = self.to_qkv(norm_hidden_states)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
q = self.norm_q(q)
k = self.norm_k(k)
q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False)
v_len = txt_len - split_token
q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous()
k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous()
v_a, v_b = v[:, :-v_len].contiguous(), v[:, -v_len:].contiguous()
attn_output_a = attention(q_a, k_a, v_a)
attn_output_b = attention(q_b, k_b, v_b)
attn_output = torch.concat([attn_output_a, attn_output_b], dim=1)
hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod_gate, tr_mod_gate, tr_token)
hidden_states = hidden_states + apply_gate(self.ff(norm_hidden_states), mod_gate, tr_mod_gate, tr_token)
return hidden_states
class FinalLayer(torch.nn.Module):
def __init__(self, hidden_size=3072, patch_size=(1, 2, 2), out_channels=16):
super().__init__()
self.norm_final = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = torch.nn.Linear(hidden_size, patch_size[0] * patch_size[1] * patch_size[2] * out_channels)
self.adaLN_modulation = torch.nn.Sequential(torch.nn.SiLU(), torch.nn.Linear(hidden_size, 2 * hidden_size))
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift=shift, scale=scale)
x = self.linear(x)
return x
class HunyuanVideoDiT(torch.nn.Module):
def __init__(self, in_channels=16, hidden_size=3072, text_dim=4096, num_double_blocks=20, num_single_blocks=40, guidance_embed=True):
super().__init__()
self.img_in = PatchEmbed(in_channels=in_channels, embed_dim=hidden_size)
self.txt_in = SingleTokenRefiner(in_channels=text_dim, hidden_size=hidden_size)
self.time_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu")
self.vector_in = torch.nn.Sequential(
torch.nn.Linear(768, hidden_size),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size)
)
self.guidance_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu") if guidance_embed else None
self.double_blocks = torch.nn.ModuleList([MMDoubleStreamBlock(hidden_size) for _ in range(num_double_blocks)])
self.single_blocks = torch.nn.ModuleList([MMSingleStreamBlock(hidden_size) for _ in range(num_single_blocks)])
self.final_layer = FinalLayer(hidden_size)
# TODO: remove these parameters
self.dtype = torch.bfloat16
self.patch_size = [1, 2, 2]
self.hidden_size = 3072
self.heads_num = 24
self.rope_dim_list = [16, 56, 56]
def unpatchify(self, x, T, H, W):
x = rearrange(x, "B (T H W) (C pT pH pW) -> B C (T pT) (H pH) (W pW)", H=H, W=W, pT=1, pH=2, pW=2)
return x
def enable_block_wise_offload(self, warm_device="cuda", cold_device="cpu"):
self.warm_device = warm_device
self.cold_device = cold_device
self.to(self.cold_device)
def load_models_to_device(self, loadmodel_names=[], device="cpu"):
for model_name in loadmodel_names:
model = getattr(self, model_name)
if model is not None:
model.to(device)
torch.cuda.empty_cache()
def prepare_freqs(self, latents):
return HunyuanVideoRope(latents)
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
prompt_emb: torch.Tensor = None,
text_mask: torch.Tensor = None,
pooled_prompt_emb: torch.Tensor = None,
freqs_cos: torch.Tensor = None,
freqs_sin: torch.Tensor = None,
guidance: torch.Tensor = None,
**kwargs
):
B, C, T, H, W = x.shape
vec = self.time_in(t, dtype=torch.float32) + self.vector_in(pooled_prompt_emb)
if self.guidance_in is not None:
vec += self.guidance_in(guidance * 1000, dtype=torch.float32)
img = self.img_in(x)
txt = self.txt_in(prompt_emb, t, text_mask)
for block in tqdm(self.double_blocks, desc="Double stream blocks"):
img, txt = block(img, txt, vec, (freqs_cos, freqs_sin))
x = torch.concat([img, txt], dim=1)
for block in tqdm(self.single_blocks, desc="Single stream blocks"):
x = block(x, vec, (freqs_cos, freqs_sin))
img = x[:, :-256]
img = self.final_layer(img, vec)
img = self.unpatchify(img, T=T//1, H=H//2, W=W//2)
return img
def enable_auto_offload(self, dtype=torch.bfloat16, device="cuda"):
def cast_to(weight, dtype=None, device=None, copy=False):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
return weight.to(dtype=dtype, copy=copy)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight)
return r
def cast_weight(s, input=None, dtype=None, device=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if device is None:
device = input.device
weight = cast_to(s.weight, dtype, device)
return weight
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
weight = cast_to(s.weight, dtype, device)
bias = cast_to(s.bias, bias_dtype, device) if s.bias is not None else None
return weight, bias
class quantized_layer:
class Linear(torch.nn.Linear):
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.device = device
def block_forward_(self, x, i, j, dtype, device):
weight_ = cast_to(
self.weight[j * self.block_size: (j + 1) * self.block_size, i * self.block_size: (i + 1) * self.block_size],
dtype=dtype, device=device
)
if self.bias is None or i > 0:
bias_ = None
else:
bias_ = cast_to(self.bias[j * self.block_size: (j + 1) * self.block_size], dtype=dtype, device=device)
x_ = x[..., i * self.block_size: (i + 1) * self.block_size]
y_ = torch.nn.functional.linear(x_, weight_, bias_)
del x_, weight_, bias_
torch.cuda.empty_cache()
return y_
def block_forward(self, x, **kwargs):
# This feature can only reduce 2GB VRAM, so we disable it.
y = torch.zeros(x.shape[:-1] + (self.out_features,), dtype=x.dtype, device=x.device)
for i in range((self.in_features + self.block_size - 1) // self.block_size):
for j in range((self.out_features + self.block_size - 1) // self.block_size):
y[..., j * self.block_size: (j + 1) * self.block_size] += self.block_forward_(x, i, j, dtype=x.dtype, device=x.device)
return y
def forward(self, x, **kwargs):
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
return torch.nn.functional.linear(x, weight, bias)
class RMSNorm(torch.nn.Module):
def __init__(self, module, dtype=torch.bfloat16, device="cuda"):
super().__init__()
self.module = module
self.dtype = dtype
self.device = device
def forward(self, hidden_states, **kwargs):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps)
hidden_states = hidden_states.to(input_dtype)
if self.module.weight is not None:
weight = cast_weight(self.module, hidden_states, dtype=torch.bfloat16, device="cuda")
hidden_states = hidden_states * weight
return hidden_states
class Conv3d(torch.nn.Conv3d):
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.device = device
def forward(self, x):
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
return torch.nn.functional.conv3d(x, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class LayerNorm(torch.nn.LayerNorm):
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.device = device
def forward(self, x):
if self.weight is not None and self.bias is not None:
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps)
else:
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
def replace_layer(model, dtype=torch.bfloat16, device="cuda"):
for name, module in model.named_children():
if isinstance(module, torch.nn.Linear):
with init_weights_on_device():
new_layer = quantized_layer.Linear(
module.in_features, module.out_features, bias=module.bias is not None,
dtype=dtype, device=device
)
new_layer.load_state_dict(module.state_dict(), assign=True)
setattr(model, name, new_layer)
elif isinstance(module, torch.nn.Conv3d):
with init_weights_on_device():
new_layer = quantized_layer.Conv3d(
module.in_channels, module.out_channels, kernel_size=module.kernel_size, stride=module.stride,
dtype=dtype, device=device
)
new_layer.load_state_dict(module.state_dict(), assign=True)
setattr(model, name, new_layer)
elif isinstance(module, RMSNorm):
new_layer = quantized_layer.RMSNorm(
module,
dtype=dtype, device=device
)
setattr(model, name, new_layer)
elif isinstance(module, torch.nn.LayerNorm):
with init_weights_on_device():
new_layer = quantized_layer.LayerNorm(
module.normalized_shape, elementwise_affine=module.elementwise_affine, eps=module.eps,
dtype=dtype, device=device
)
new_layer.load_state_dict(module.state_dict(), assign=True)
setattr(model, name, new_layer)
else:
replace_layer(module, dtype=dtype, device=device)
replace_layer(self, dtype=dtype, device=device)
@staticmethod
def state_dict_converter():
return HunyuanVideoDiTStateDictConverter()
class HunyuanVideoDiTStateDictConverter:
def __init__(self):
pass
def from_civitai(self, state_dict):
origin_hash_key = hash_state_dict_keys(state_dict, with_shape=True)
if "module" in state_dict:
state_dict = state_dict["module"]
direct_dict = {
"img_in.proj": "img_in.proj",
"time_in.mlp.0": "time_in.timestep_embedder.0",
"time_in.mlp.2": "time_in.timestep_embedder.2",
"vector_in.in_layer": "vector_in.0",
"vector_in.out_layer": "vector_in.2",
"guidance_in.mlp.0": "guidance_in.timestep_embedder.0",
"guidance_in.mlp.2": "guidance_in.timestep_embedder.2",
"txt_in.input_embedder": "txt_in.input_embedder",
"txt_in.t_embedder.mlp.0": "txt_in.t_embedder.timestep_embedder.0",
"txt_in.t_embedder.mlp.2": "txt_in.t_embedder.timestep_embedder.2",
"txt_in.c_embedder.linear_1": "txt_in.c_embedder.0",
"txt_in.c_embedder.linear_2": "txt_in.c_embedder.2",
"final_layer.linear": "final_layer.linear",
"final_layer.adaLN_modulation.1": "final_layer.adaLN_modulation.1",
}
txt_suffix_dict = {
"norm1": "norm1",
"self_attn_qkv": "self_attn_qkv",
"self_attn_proj": "self_attn_proj",
"norm2": "norm2",
"mlp.fc1": "mlp.0",
"mlp.fc2": "mlp.2",
"adaLN_modulation.1": "adaLN_modulation.1",
}
double_suffix_dict = {
"img_mod.linear": "component_a.mod.linear",
"img_attn_qkv": "component_a.to_qkv",
"img_attn_q_norm": "component_a.norm_q",
"img_attn_k_norm": "component_a.norm_k",
"img_attn_proj": "component_a.to_out",
"img_mlp.fc1": "component_a.ff.0",
"img_mlp.fc2": "component_a.ff.2",
"txt_mod.linear": "component_b.mod.linear",
"txt_attn_qkv": "component_b.to_qkv",
"txt_attn_q_norm": "component_b.norm_q",
"txt_attn_k_norm": "component_b.norm_k",
"txt_attn_proj": "component_b.to_out",
"txt_mlp.fc1": "component_b.ff.0",
"txt_mlp.fc2": "component_b.ff.2",
}
single_suffix_dict = {
"linear1": ["to_qkv", "ff.0"],
"linear2": ["to_out", "ff.2"],
"q_norm": "norm_q",
"k_norm": "norm_k",
"modulation.linear": "mod.linear",
}
# single_suffix_dict = {
# "linear1": "linear1",
# "linear2": "linear2",
# "q_norm": "q_norm",
# "k_norm": "k_norm",
# "modulation.linear": "modulation.linear",
# }
state_dict_ = {}
for name, param in state_dict.items():
names = name.split(".")
direct_name = ".".join(names[:-1])
if direct_name in direct_dict:
name_ = direct_dict[direct_name] + "." + names[-1]
state_dict_[name_] = param
elif names[0] == "double_blocks":
prefix = ".".join(names[:2])
suffix = ".".join(names[2:-1])
name_ = prefix + "." + double_suffix_dict[suffix] + "." + names[-1]
state_dict_[name_] = param
elif names[0] == "single_blocks":
prefix = ".".join(names[:2])
suffix = ".".join(names[2:-1])
if isinstance(single_suffix_dict[suffix], list):
if suffix == "linear1":
name_a, name_b = single_suffix_dict[suffix]
param_a, param_b = torch.split(param, (3072*3, 3072*4), dim=0)
state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a
state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b
elif suffix == "linear2":
if names[-1] == "weight":
name_a, name_b = single_suffix_dict[suffix]
param_a, param_b = torch.split(param, (3072*1, 3072*4), dim=-1)
state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a
state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b
else:
name_a, name_b = single_suffix_dict[suffix]
state_dict_[prefix + "." + name_a + "." + names[-1]] = param
else:
pass
else:
name_ = prefix + "." + single_suffix_dict[suffix] + "." + names[-1]
state_dict_[name_] = param
elif names[0] == "txt_in":
prefix = ".".join(names[:4]).replace(".individual_token_refiner.", ".")
suffix = ".".join(names[4:-1])
name_ = prefix + "." + txt_suffix_dict[suffix] + "." + names[-1]
state_dict_[name_] = param
else:
pass
return state_dict_