ReCamMaster / diffsynth /models /stepvideo_vae.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
raw
history blame
42.4 kB
# Copyright 2025 StepFun Inc. All Rights Reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# ==============================================================================
import torch
from einops import rearrange
from torch import nn
from torch.nn import functional as F
from tqdm import tqdm
from einops import repeat
class BaseGroupNorm(nn.GroupNorm):
def __init__(self, num_groups, num_channels):
super().__init__(num_groups=num_groups, num_channels=num_channels)
def forward(self, x, zero_pad=False, **kwargs):
if zero_pad:
return base_group_norm_with_zero_pad(x, self, **kwargs)
else:
return base_group_norm(x, self, **kwargs)
def base_group_norm(x, norm_layer, act_silu=False, channel_last=False):
if hasattr(base_group_norm, 'spatial') and base_group_norm.spatial:
assert channel_last == True
x_shape = x.shape
x = x.flatten(0, 1)
if channel_last:
# Permute to NCHW format
x = x.permute(0, 3, 1, 2)
out = F.group_norm(x.contiguous(), norm_layer.num_groups, norm_layer.weight, norm_layer.bias, norm_layer.eps)
if act_silu:
out = F.silu(out)
if channel_last:
# Permute back to NHWC format
out = out.permute(0, 2, 3, 1)
out = out.view(x_shape)
else:
if channel_last:
# Permute to NCHW format
x = x.permute(0, 3, 1, 2)
out = F.group_norm(x.contiguous(), norm_layer.num_groups, norm_layer.weight, norm_layer.bias, norm_layer.eps)
if act_silu:
out = F.silu(out)
if channel_last:
# Permute back to NHWC format
out = out.permute(0, 2, 3, 1)
return out
def base_conv2d(x, conv_layer, channel_last=False, residual=None):
if channel_last:
x = x.permute(0, 3, 1, 2) # NHWC to NCHW
out = F.conv2d(x, conv_layer.weight, conv_layer.bias, stride=conv_layer.stride, padding=conv_layer.padding)
if residual is not None:
if channel_last:
residual = residual.permute(0, 3, 1, 2) # NHWC to NCHW
out += residual
if channel_last:
out = out.permute(0, 2, 3, 1) # NCHW to NHWC
return out
def base_conv3d(x, conv_layer, channel_last=False, residual=None, only_return_output=False):
if only_return_output:
size = cal_outsize(x.shape, conv_layer.weight.shape, conv_layer.stride, conv_layer.padding)
return torch.empty(size, device=x.device, dtype=x.dtype)
if channel_last:
x = x.permute(0, 4, 1, 2, 3) # NDHWC to NCDHW
out = F.conv3d(x, conv_layer.weight, conv_layer.bias, stride=conv_layer.stride, padding=conv_layer.padding)
if residual is not None:
if channel_last:
residual = residual.permute(0, 4, 1, 2, 3) # NDHWC to NCDHW
out += residual
if channel_last:
out = out.permute(0, 2, 3, 4, 1) # NCDHW to NDHWC
return out
def cal_outsize(input_sizes, kernel_sizes, stride, padding):
stride_d, stride_h, stride_w = stride
padding_d, padding_h, padding_w = padding
dilation_d, dilation_h, dilation_w = 1, 1, 1
in_d = input_sizes[1]
in_h = input_sizes[2]
in_w = input_sizes[3]
in_channel = input_sizes[4]
kernel_d = kernel_sizes[2]
kernel_h = kernel_sizes[3]
kernel_w = kernel_sizes[4]
out_channels = kernel_sizes[0]
out_d = calc_out_(in_d, padding_d, dilation_d, kernel_d, stride_d)
out_h = calc_out_(in_h, padding_h, dilation_h, kernel_h, stride_h)
out_w = calc_out_(in_w, padding_w, dilation_w, kernel_w, stride_w)
size = [input_sizes[0], out_d, out_h, out_w, out_channels]
return size
def calc_out_(in_size, padding, dilation, kernel, stride):
return (in_size + 2 * padding - dilation * (kernel - 1) - 1) // stride + 1
def base_conv3d_channel_last(x, conv_layer, residual=None):
in_numel = x.numel()
out_numel = int(x.numel() * conv_layer.out_channels / conv_layer.in_channels)
if (in_numel >= 2**30) or (out_numel >= 2**30):
assert conv_layer.stride[0] == 1, "time split asks time stride = 1"
B,T,H,W,C = x.shape
K = conv_layer.kernel_size[0]
chunks = 4
chunk_size = T // chunks
if residual is None:
out_nhwc = base_conv3d(x, conv_layer, channel_last=True, residual=residual, only_return_output=True)
else:
out_nhwc = residual
assert B == 1
outs = []
for i in range(chunks):
if i == chunks-1:
xi = x[:1,chunk_size*i:]
out_nhwci = out_nhwc[:1,chunk_size*i:]
else:
xi = x[:1,chunk_size*i:chunk_size*(i+1)+K-1]
out_nhwci = out_nhwc[:1,chunk_size*i:chunk_size*(i+1)]
if residual is not None:
if i == chunks-1:
ri = residual[:1,chunk_size*i:]
else:
ri = residual[:1,chunk_size*i:chunk_size*(i+1)]
else:
ri = None
out_nhwci.copy_(base_conv3d(xi, conv_layer, channel_last=True, residual=ri))
else:
out_nhwc = base_conv3d(x, conv_layer, channel_last=True, residual=residual)
return out_nhwc
class Upsample2D(nn.Module):
def __init__(self,
channels,
use_conv=False,
use_conv_transpose=False,
out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
if use_conv:
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
else:
assert "Not Supported"
self.conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
def forward(self, x, output_size=None):
assert x.shape[-1] == self.channels
if self.use_conv_transpose:
return self.conv(x)
if output_size is None:
x = F.interpolate(
x.permute(0,3,1,2).to(memory_format=torch.channels_last),
scale_factor=2.0, mode='nearest').permute(0,2,3,1).contiguous()
else:
x = F.interpolate(
x.permute(0,3,1,2).to(memory_format=torch.channels_last),
size=output_size, mode='nearest').permute(0,2,3,1).contiguous()
# x = self.conv(x)
x = base_conv2d(x, self.conv, channel_last=True)
return x
class Downsample2D(nn.Module):
def __init__(self, channels, use_conv=False, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
stride = 2
if use_conv:
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
self.conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[-1] == self.channels
if self.use_conv and self.padding == 0:
pad = (0, 0, 0, 1, 0, 1)
x = F.pad(x, pad, mode="constant", value=0)
assert x.shape[-1] == self.channels
# x = self.conv(x)
x = base_conv2d(x, self.conv, channel_last=True)
return x
class CausalConv(nn.Module):
def __init__(self,
chan_in,
chan_out,
kernel_size,
**kwargs
):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = kernel_size if isinstance(kernel_size, tuple) else ((kernel_size,) * 3)
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
self.dilation = kwargs.pop('dilation', 1)
self.stride = kwargs.pop('stride', 1)
if isinstance(self.stride, int):
self.stride = (self.stride, 1, 1)
time_pad = self.dilation * (time_kernel_size - 1) + max((1 - self.stride[0]), 0)
height_pad = height_kernel_size // 2
width_pad = width_kernel_size // 2
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)
self.time_uncausal_padding = (width_pad, width_pad, height_pad, height_pad, 0, 0)
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, **kwargs)
self.is_first_run = True
def forward(self, x, is_init=True, residual=None):
x = nn.functional.pad(x,
self.time_causal_padding if is_init else self.time_uncausal_padding)
x = self.conv(x)
if residual is not None:
x.add_(residual)
return x
class ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
factor: int,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.factor = factor
assert out_channels * factor**3 % in_channels == 0
self.repeats = out_channels * factor**3 // in_channels
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor:
x = x.repeat_interleave(self.repeats, dim=1)
x = x.view(x.size(0), self.out_channels, self.factor, self.factor, self.factor, x.size(2), x.size(3), x.size(4))
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
x = x.view(x.size(0), self.out_channels, x.size(2)*self.factor, x.size(4)*self.factor, x.size(6)*self.factor)
x = x[:, :, self.factor - 1:, :, :]
return x
class ConvPixelShuffleUpSampleLayer3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
factor: int,
):
super().__init__()
self.factor = factor
out_ratio = factor**3
self.conv = CausalConv(
in_channels,
out_channels * out_ratio,
kernel_size=kernel_size
)
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor:
x = self.conv(x, is_init)
x = self.pixel_shuffle_3d(x, self.factor)
return x
@staticmethod
def pixel_shuffle_3d(x: torch.Tensor, factor: int) -> torch.Tensor:
batch_size, channels, depth, height, width = x.size()
new_channels = channels // (factor ** 3)
new_depth = depth * factor
new_height = height * factor
new_width = width * factor
x = x.view(batch_size, new_channels, factor, factor, factor, depth, height, width)
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
x = x.view(batch_size, new_channels, new_depth, new_height, new_width)
x = x[:, :, factor - 1:, :, :]
return x
class ConvPixelUnshuffleDownSampleLayer3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
factor: int,
):
super().__init__()
self.factor = factor
out_ratio = factor**3
assert out_channels % out_ratio == 0
self.conv = CausalConv(
in_channels,
out_channels // out_ratio,
kernel_size=kernel_size
)
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor:
x = self.conv(x, is_init)
x = self.pixel_unshuffle_3d(x, self.factor)
return x
@staticmethod
def pixel_unshuffle_3d(x: torch.Tensor, factor: int) -> torch.Tensor:
pad = (0, 0, 0, 0, factor-1, 0) # (left, right, top, bottom, front, back)
x = F.pad(x, pad)
B, C, D, H, W = x.shape
x = x.view(B, C, D // factor, factor, H // factor, factor, W // factor, factor)
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
x = x.view(B, C * factor**3, D // factor, H // factor, W // factor)
return x
class PixelUnshuffleChannelAveragingDownSampleLayer3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
factor: int,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.factor = factor
assert in_channels * factor**3 % out_channels == 0
self.group_size = in_channels * factor**3 // out_channels
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor:
pad = (0, 0, 0, 0, self.factor-1, 0) # (left, right, top, bottom, front, back)
x = F.pad(x, pad)
B, C, D, H, W = x.shape
x = x.view(B, C, D // self.factor, self.factor, H // self.factor, self.factor, W // self.factor, self.factor)
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
x = x.view(B, C * self.factor**3, D // self.factor, H // self.factor, W // self.factor)
x = x.view(B, self.out_channels, self.group_size, D // self.factor, H // self.factor, W // self.factor)
x = x.mean(dim=2)
return x
def __init__(
self,
in_channels: int,
out_channels: int,
factor: int,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.factor = factor
assert in_channels * factor**3 % out_channels == 0
self.group_size = in_channels * factor**3 // out_channels
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor:
pad = (0, 0, 0, 0, self.factor-1, 0) # (left, right, top, bottom, front, back)
x = F.pad(x, pad)
B, C, D, H, W = x.shape
x = x.view(B, C, D // self.factor, self.factor, H // self.factor, self.factor, W // self.factor, self.factor)
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
x = x.view(B, C * self.factor**3, D // self.factor, H // self.factor, W // self.factor)
x = x.view(B, self.out_channels, self.group_size, D // self.factor, H // self.factor, W // self.factor)
x = x.mean(dim=2)
return x
def base_group_norm_with_zero_pad(x, norm_layer, act_silu=True, pad_size=2):
out_shape = list(x.shape)
out_shape[1] += pad_size
out = torch.empty(out_shape, dtype=x.dtype, device=x.device)
out[:, pad_size:] = base_group_norm(x, norm_layer, act_silu=act_silu, channel_last=True)
out[:, :pad_size] = 0
return out
class CausalConvChannelLast(CausalConv):
def __init__(self,
chan_in,
chan_out,
kernel_size,
**kwargs
):
super().__init__(
chan_in, chan_out, kernel_size, **kwargs)
self.time_causal_padding = (0, 0) + self.time_causal_padding
self.time_uncausal_padding = (0, 0) + self.time_uncausal_padding
def forward(self, x, is_init=True, residual=None):
if self.is_first_run:
self.is_first_run = False
# self.conv.weight = nn.Parameter(self.conv.weight.permute(0,2,3,4,1).contiguous())
x = nn.functional.pad(x,
self.time_causal_padding if is_init else self.time_uncausal_padding)
x = base_conv3d_channel_last(x, self.conv, residual=residual)
return x
class CausalConvAfterNorm(CausalConv):
def __init__(self,
chan_in,
chan_out,
kernel_size,
**kwargs
):
super().__init__(
chan_in, chan_out, kernel_size, **kwargs)
if self.time_causal_padding == (1, 1, 1, 1, 2, 0):
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, padding=(0, 1, 1), **kwargs)
else:
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, **kwargs)
self.is_first_run = True
def forward(self, x, is_init=True, residual=None):
if self.is_first_run:
self.is_first_run = False
if self.time_causal_padding == (1, 1, 1, 1, 2, 0):
pass
else:
x = nn.functional.pad(x, self.time_causal_padding).contiguous()
x = base_conv3d_channel_last(x, self.conv, residual=residual)
return x
class AttnBlock(nn.Module):
def __init__(self,
in_channels
):
super().__init__()
self.norm = BaseGroupNorm(num_groups=32, num_channels=in_channels)
self.q = CausalConvChannelLast(in_channels, in_channels, kernel_size=1)
self.k = CausalConvChannelLast(in_channels, in_channels, kernel_size=1)
self.v = CausalConvChannelLast(in_channels, in_channels, kernel_size=1)
self.proj_out = CausalConvChannelLast(in_channels, in_channels, kernel_size=1)
def attention(self, x, is_init=True):
x = self.norm(x, act_silu=False, channel_last=True)
q = self.q(x, is_init)
k = self.k(x, is_init)
v = self.v(x, is_init)
b, t, h, w, c = q.shape
q, k, v = map(lambda x: rearrange(x, "b t h w c -> b 1 (t h w) c"), (q, k, v))
x = nn.functional.scaled_dot_product_attention(q, k, v, is_causal=True)
x = rearrange(x, "b 1 (t h w) c -> b t h w c", t=t, h=h, w=w)
return x
def forward(self, x):
x = x.permute(0,2,3,4,1).contiguous()
h = self.attention(x)
x = self.proj_out(h, residual=x)
x = x.permute(0,4,1,2,3)
return x
class Resnet3DBlock(nn.Module):
def __init__(self,
in_channels,
out_channels=None,
temb_channels=512,
conv_shortcut=False,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = BaseGroupNorm(num_groups=32, num_channels=in_channels)
self.conv1 = CausalConvAfterNorm(in_channels, out_channels, kernel_size=3)
if temb_channels > 0:
self.temb_proj = nn.Linear(temb_channels, out_channels)
self.norm2 = BaseGroupNorm(num_groups=32, num_channels=out_channels)
self.conv2 = CausalConvAfterNorm(out_channels, out_channels, kernel_size=3)
assert conv_shortcut is False
self.use_conv_shortcut = conv_shortcut
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = CausalConvAfterNorm(in_channels, out_channels, kernel_size=3)
else:
self.nin_shortcut = CausalConvAfterNorm(in_channels, out_channels, kernel_size=1)
def forward(self, x, temb=None, is_init=True):
x = x.permute(0,2,3,4,1).contiguous()
h = self.norm1(x, zero_pad=True, act_silu=True, pad_size=2)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nn.functional.silu(temb))[:, :, None, None]
x = self.nin_shortcut(x) if self.in_channels != self.out_channels else x
h = self.norm2(h, zero_pad=True, act_silu=True, pad_size=2)
x = self.conv2(h, residual=x)
x = x.permute(0,4,1,2,3)
return x
class Downsample3D(nn.Module):
def __init__(self,
in_channels,
with_conv,
stride
):
super().__init__()
self.with_conv = with_conv
if with_conv:
self.conv = CausalConv(in_channels, in_channels, kernel_size=3, stride=stride)
def forward(self, x, is_init=True):
if self.with_conv:
x = self.conv(x, is_init)
else:
x = nn.functional.avg_pool3d(x, kernel_size=2, stride=2)
return x
class VideoEncoder(nn.Module):
def __init__(self,
ch=32,
ch_mult=(4, 8, 16, 16),
num_res_blocks=2,
in_channels=3,
z_channels=16,
double_z=True,
down_sampling_layer=[1, 2],
resamp_with_conv=True,
version=1,
):
super().__init__()
temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
# downsampling
self.conv_in = CausalConv(in_channels, ch, kernel_size=3)
self.down_sampling_layer = down_sampling_layer
in_ch_mult = (1,) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
Resnet3DBlock(in_channels=block_in, out_channels=block_out, temb_channels=temb_ch))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
if i_level in self.down_sampling_layer:
down.downsample = Downsample3D(block_in, resamp_with_conv, stride=(2, 2, 2))
else:
down.downsample = Downsample2D(block_in, resamp_with_conv, padding=0) #DIFF
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch)
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in)
self.version = version
if version == 2:
channels = 4 * z_channels * 2 ** 3
self.conv_patchify = ConvPixelUnshuffleDownSampleLayer3D(block_in, channels, kernel_size=3, factor=2)
self.shortcut_pathify = PixelUnshuffleChannelAveragingDownSampleLayer3D(block_in, channels, 2)
self.shortcut_out = PixelUnshuffleChannelAveragingDownSampleLayer3D(channels, 2 * z_channels if double_z else z_channels, 1)
self.conv_out = CausalConvChannelLast(channels, 2 * z_channels if double_z else z_channels, kernel_size=3)
else:
self.conv_out = CausalConvAfterNorm(block_in, 2 * z_channels if double_z else z_channels, kernel_size=3)
@torch.inference_mode()
def forward(self, x, video_frame_num, is_init=True):
# timestep embedding
temb = None
t = video_frame_num
# downsampling
h = self.conv_in(x, is_init)
# make it real channel last, but behave like normal layout
h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h, temb, is_init)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions - 1:
if isinstance(self.down[i_level].downsample, Downsample2D):
_, _, t, _, _ = h.shape
h = rearrange(h, "b c t h w -> (b t) h w c", t=t)
h = self.down[i_level].downsample(h)
h = rearrange(h, "(b t) h w c -> b c t h w", t=t)
else:
h = self.down[i_level].downsample(h, is_init)
h = self.mid.block_1(h, temb, is_init)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb, is_init)
h = h.permute(0,2,3,4,1).contiguous() # b c l h w -> b l h w c
if self.version == 2:
h = base_group_norm(h, self.norm_out, act_silu=True, channel_last=True)
h = h.permute(0,4,1,2,3).contiguous()
shortcut = self.shortcut_pathify(h, is_init)
h = self.conv_patchify(h, is_init)
h = h.add_(shortcut)
shortcut = self.shortcut_out(h, is_init).permute(0,2,3,4,1)
h = self.conv_out(h.permute(0,2,3,4,1).contiguous(), is_init)
h = h.add_(shortcut)
else:
h = base_group_norm_with_zero_pad(h, self.norm_out, act_silu=True, pad_size=2)
h = self.conv_out(h, is_init)
h = h.permute(0,4,1,2,3) # b l h w c -> b c l h w
h = rearrange(h, "b c t h w -> b t c h w")
return h
class Res3DBlockUpsample(nn.Module):
def __init__(self,
input_filters,
num_filters,
down_sampling_stride,
down_sampling=False
):
super().__init__()
self.input_filters = input_filters
self.num_filters = num_filters
self.act_ = nn.SiLU(inplace=True)
self.conv1 = CausalConvChannelLast(num_filters, num_filters, kernel_size=[3, 3, 3])
self.norm1 = BaseGroupNorm(32, num_filters)
self.conv2 = CausalConvChannelLast(num_filters, num_filters, kernel_size=[3, 3, 3])
self.norm2 = BaseGroupNorm(32, num_filters)
self.down_sampling = down_sampling
if down_sampling:
self.down_sampling_stride = down_sampling_stride
else:
self.down_sampling_stride = [1, 1, 1]
if num_filters != input_filters or down_sampling:
self.conv3 = CausalConvChannelLast(input_filters, num_filters, kernel_size=[1, 1, 1], stride=self.down_sampling_stride)
self.norm3 = BaseGroupNorm(32, num_filters)
def forward(self, x, is_init=False):
x = x.permute(0,2,3,4,1).contiguous()
residual = x
h = self.conv1(x, is_init)
h = self.norm1(h, act_silu=True, channel_last=True)
h = self.conv2(h, is_init)
h = self.norm2(h, act_silu=False, channel_last=True)
if self.down_sampling or self.num_filters != self.input_filters:
x = self.conv3(x, is_init)
x = self.norm3(x, act_silu=False, channel_last=True)
h.add_(x)
h = self.act_(h)
if residual is not None:
h.add_(residual)
h = h.permute(0,4,1,2,3)
return h
class Upsample3D(nn.Module):
def __init__(self,
in_channels,
scale_factor=2
):
super().__init__()
self.scale_factor = scale_factor
self.conv3d = Res3DBlockUpsample(input_filters=in_channels,
num_filters=in_channels,
down_sampling_stride=(1, 1, 1),
down_sampling=False)
def forward(self, x, is_init=True, is_split=True):
b, c, t, h, w = x.shape
# x = x.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3).to(memory_format=torch.channels_last_3d)
if is_split:
split_size = c // 8
x_slices = torch.split(x, split_size, dim=1)
x = [nn.functional.interpolate(x, scale_factor=self.scale_factor) for x in x_slices]
x = torch.cat(x, dim=1)
else:
x = nn.functional.interpolate(x, scale_factor=self.scale_factor)
x = self.conv3d(x, is_init)
return x
class VideoDecoder(nn.Module):
def __init__(self,
ch=128,
z_channels=16,
out_channels=3,
ch_mult=(1, 2, 4, 4),
num_res_blocks=2,
temporal_up_layers=[2, 3],
temporal_downsample=4,
resamp_with_conv=True,
version=1,
):
super().__init__()
temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.temporal_downsample = temporal_downsample
block_in = ch * ch_mult[self.num_resolutions - 1]
self.version = version
if version == 2:
channels = 4 * z_channels * 2 ** 3
self.conv_in = CausalConv(z_channels, channels, kernel_size=3)
self.shortcut_in = ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(z_channels, channels, 1)
self.conv_unpatchify = ConvPixelShuffleUpSampleLayer3D(channels, block_in, kernel_size=3, factor=2)
self.shortcut_unpathify = ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(channels, block_in, 2)
else:
self.conv_in = CausalConv(z_channels, block_in, kernel_size=3)
# middle
self.mid = nn.Module()
self.mid.block_1 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch)
# upsampling
self.up_id = len(temporal_up_layers)
self.video_frame_num = 1
self.cur_video_frame_num = self.video_frame_num // 2 ** self.up_id + 1
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
Resnet3DBlock(in_channels=block_in, out_channels=block_out, temb_channels=temb_ch))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
if i_level in temporal_up_layers:
up.upsample = Upsample3D(block_in)
self.cur_video_frame_num = self.cur_video_frame_num * 2
else:
up.upsample = Upsample2D(block_in, resamp_with_conv)
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in)
self.conv_out = CausalConvAfterNorm(block_in, out_channels, kernel_size=3)
@torch.inference_mode()
def forward(self, z, is_init=True):
z = rearrange(z, "b t c h w -> b c t h w")
h = self.conv_in(z, is_init=is_init)
if self.version == 2:
shortcut = self.shortcut_in(z, is_init=is_init)
h = h.add_(shortcut)
shortcut = self.shortcut_unpathify(h, is_init=is_init)
h = self.conv_unpatchify(h, is_init=is_init)
h = h.add_(shortcut)
temb = None
h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3)
h = self.mid.block_1(h, temb, is_init=is_init)
h = self.mid.attn_1(h)
h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3)
h = self.mid.block_2(h, temb, is_init=is_init)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3)
h = self.up[i_level].block[i_block](h, temb, is_init=is_init)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
if isinstance(self.up[i_level].upsample, Upsample2D) or (hasattr(self.up[i_level].upsample, "module") and isinstance(self.up[i_level].upsample.module, Upsample2D)):
B = h.size(0)
h = h.permute(0,2,3,4,1).flatten(0,1)
h = self.up[i_level].upsample(h)
h = h.unflatten(0, (B, -1)).permute(0,4,1,2,3)
else:
h = self.up[i_level].upsample(h, is_init=is_init)
# end
h = h.permute(0,2,3,4,1) # b c l h w -> b l h w c
self.norm_out.to(dtype=h.dtype, device=h.device) # To be updated
h = base_group_norm_with_zero_pad(h, self.norm_out, act_silu=True, pad_size=2)
h = self.conv_out(h)
h = h.permute(0,4,1,2,3)
if is_init:
h = h[:, :, (self.temporal_downsample - 1):]
return h
def rms_norm(input, normalized_shape, eps=1e-6):
dtype = input.dtype
input = input.to(torch.float32)
variance = input.pow(2).flatten(-len(normalized_shape)).mean(-1)[(...,) + (None,) * len(normalized_shape)]
input = input * torch.rsqrt(variance + eps)
return input.to(dtype)
class DiagonalGaussianDistribution(object):
def __init__(self, parameters, deterministic=False, rms_norm_mean=False, only_return_mean=False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=-3) #N,[X],C,H,W
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
self.deterministic = deterministic
if self.deterministic:
self.var = self.std = torch.zeros_like(
self.mean,
device=self.parameters.device,
dtype=self.parameters.dtype)
if rms_norm_mean:
self.mean = rms_norm(self.mean, self.mean.size()[1:])
self.only_return_mean = only_return_mean
def sample(self, generator=None):
# make sure sample is on the same device
# as the parameters and has same dtype
sample = torch.randn(
self.mean.shape, generator=generator, device=self.parameters.device)
sample = sample.to(dtype=self.parameters.dtype)
x = self.mean + self.std * sample
if self.only_return_mean:
return self.mean
else:
return x
class StepVideoVAE(nn.Module):
def __init__(self,
in_channels=3,
out_channels=3,
z_channels=64,
num_res_blocks=2,
model_path=None,
weight_dict={},
world_size=1,
version=2,
):
super().__init__()
self.frame_len = 17
self.latent_len = 3 if version == 2 else 5
base_group_norm.spatial = True if version == 2 else False
self.encoder = VideoEncoder(
in_channels=in_channels,
z_channels=z_channels,
num_res_blocks=num_res_blocks,
version=version,
)
self.decoder = VideoDecoder(
z_channels=z_channels,
out_channels=out_channels,
num_res_blocks=num_res_blocks,
version=version,
)
if model_path is not None:
weight_dict = self.init_from_ckpt(model_path)
if len(weight_dict) != 0:
self.load_from_dict(weight_dict)
self.convert_channel_last()
self.world_size = world_size
def init_from_ckpt(self, model_path):
from safetensors import safe_open
p = {}
with safe_open(model_path, framework="pt", device="cpu") as f:
for k in f.keys():
tensor = f.get_tensor(k)
if k.startswith("decoder.conv_out."):
k = k.replace("decoder.conv_out.", "decoder.conv_out.conv.")
p[k] = tensor
return p
def load_from_dict(self, p):
self.load_state_dict(p)
def convert_channel_last(self):
#Conv2d NCHW->NHWC
pass
def naive_encode(self, x, is_init_image=True):
b, l, c, h, w = x.size()
x = rearrange(x, 'b l c h w -> b c l h w').contiguous()
z = self.encoder(x, l, True) # 下采样[1, 4, 8, 16, 16]
return z
@torch.inference_mode()
def encode(self, x):
# b (nc cf) c h w -> (b nc) cf c h w -> encode -> (b nc) cf c h w -> b (nc cf) c h w
chunks = list(x.split(self.frame_len, dim=1))
for i in range(len(chunks)):
chunks[i] = self.naive_encode(chunks[i], True)
z = torch.cat(chunks, dim=1)
posterior = DiagonalGaussianDistribution(z)
return posterior.sample()
def decode_naive(self, z, is_init=True):
z = z.to(next(self.decoder.parameters()).dtype)
dec = self.decoder(z, is_init)
return dec
@torch.inference_mode()
def decode_original(self, z):
# b (nc cf) c h w -> (b nc) cf c h w -> decode -> (b nc) c cf h w -> b (nc cf) c h w
chunks = list(z.split(self.latent_len, dim=1))
if self.world_size > 1:
chunks_total_num = len(chunks)
max_num_per_rank = (chunks_total_num + self.world_size - 1) // self.world_size
rank = torch.distributed.get_rank()
chunks_ = chunks[max_num_per_rank * rank : max_num_per_rank * (rank + 1)]
if len(chunks_) < max_num_per_rank:
chunks_.extend(chunks[:max_num_per_rank-len(chunks_)])
chunks = chunks_
for i in range(len(chunks)):
chunks[i] = self.decode_naive(chunks[i], True).permute(0,2,1,3,4)
x = torch.cat(chunks, dim=1)
if self.world_size > 1:
x_ = torch.empty([x.size(0), (self.world_size * max_num_per_rank) * self.frame_len, *x.shape[2:]], dtype=x.dtype, device=x.device)
torch.distributed.all_gather_into_tensor(x_, x)
x = x_[:, : chunks_total_num * self.frame_len]
x = self.mix(x)
return x
def mix(self, x, smooth_scale = 0.6):
remain_scale = smooth_scale
mix_scale = 1. - remain_scale
front = slice(self.frame_len - 1, x.size(1) - 1, self.frame_len)
back = slice(self.frame_len, x.size(1), self.frame_len)
x[:, front], x[:, back] = (
x[:, front] * remain_scale + x[:, back] * mix_scale,
x[:, back] * remain_scale + x[:, front] * mix_scale
)
return x
def single_decode(self, hidden_states, device):
chunks = list(hidden_states.split(self.latent_len, dim=1))
for i in range(len(chunks)):
chunks[i] = self.decode_naive(chunks[i].to(device), True).permute(0,2,1,3,4).cpu()
x = torch.cat(chunks, dim=1)
return x
def build_1d_mask(self, length, left_bound, right_bound, border_width):
x = torch.ones((length,))
if not left_bound:
x[:border_width] = (torch.arange(border_width) + 1) / border_width
if not right_bound:
x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,))
return x
def build_mask(self, data, is_bound, border_width):
_, _, _, H, W = data.shape
h = self.build_1d_mask(H, is_bound[0], is_bound[1], border_width[0])
w = self.build_1d_mask(W, is_bound[2], is_bound[3], border_width[1])
h = repeat(h, "H -> H W", H=H, W=W)
w = repeat(w, "W -> H W", H=H, W=W)
mask = torch.stack([h, w]).min(dim=0).values
mask = rearrange(mask, "H W -> 1 1 1 H W")
return mask
def tiled_decode(self, hidden_states, device, tile_size=(34, 34), tile_stride=(16, 16)):
B, T, C, H, W = hidden_states.shape
size_h, size_w = tile_size
stride_h, stride_w = tile_stride
# Split tasks
tasks = []
for t in range(0, T, 3):
for h in range(0, H, stride_h):
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue
for w in range(0, W, stride_w):
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue
t_, h_, w_ = t + 3, h + size_h, w + size_w
tasks.append((t, t_, h, h_, w, w_))
# Run
data_device = "cpu"
computation_device = device
weight = torch.zeros((1, 1, T//3*17, H * 16, W * 16), dtype=hidden_states.dtype, device=data_device)
values = torch.zeros((B, 3, T//3*17, H * 16, W * 16), dtype=hidden_states.dtype, device=data_device)
for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"):
hidden_states_batch = hidden_states[:, t:t_, :, h:h_, w:w_].to(computation_device)
hidden_states_batch = self.decode_naive(hidden_states_batch, True).to(data_device)
mask = self.build_mask(
hidden_states_batch,
is_bound=(h==0, h_>=H, w==0, w_>=W),
border_width=((size_h - stride_h) * 16, (size_w - stride_w) * 16)
).to(dtype=hidden_states.dtype, device=data_device)
target_t = t // 3 * 17
target_h = h * 16
target_w = w * 16
values[
:,
:,
target_t: target_t + hidden_states_batch.shape[2],
target_h: target_h + hidden_states_batch.shape[3],
target_w: target_w + hidden_states_batch.shape[4],
] += hidden_states_batch * mask
weight[
:,
:,
target_t: target_t + hidden_states_batch.shape[2],
target_h: target_h + hidden_states_batch.shape[3],
target_w: target_w + hidden_states_batch.shape[4],
] += mask
return values / weight
def decode(self, hidden_states, device, tiled=False, tile_size=(34, 34), tile_stride=(16, 16), smooth_scale=0.6):
hidden_states = hidden_states.to("cpu")
if tiled:
video = self.tiled_decode(hidden_states, device, tile_size, tile_stride)
else:
video = self.single_decode(hidden_states, device)
video = self.mix(video, smooth_scale=smooth_scale)
return video
@staticmethod
def state_dict_converter():
return StepVideoVAEStateDictConverter()
class StepVideoVAEStateDictConverter:
def __init__(self):
super().__init__()
def from_diffusers(self, state_dict):
return self.from_civitai(state_dict)
def from_civitai(self, state_dict):
state_dict_ = {}
for name, param in state_dict.items():
if name.startswith("decoder.conv_out."):
name_ = name.replace("decoder.conv_out.", "decoder.conv_out.conv.")
else:
name_ = name
state_dict_[name_] = param
return state_dict_