jebin2's picture
re arrange ui
6412c24
from fastapi import APIRouter, HTTPException, UploadFile, File
from fastapi.responses import FileResponse
from pydantic import BaseModel, field_validator
from typing import List
from PIL import Image
import os
import base64
from io import BytesIO
import shutil
from .config import Config
from typing import List, Optional, Union, Dict, Any
from . import utils
import copy
import traceback
app = APIRouter()
# === Configuration ===
IMAGE_ROOT = os.path.join(Config.current_path, "dataset/images")
LABEL_ROOT = os.path.join(Config.current_path, "dataset/labels")
IMAGE_LABEL_ROOT = os.path.join(Config.current_path, "image_labels")
CLASS_ID = 0
# === Pydantic Models ===
class Point(BaseModel):
x: float
y: float
class Box(BaseModel):
type: str = "bbox" # "bbox" or "segmentation"
# For bbox
left: Optional[int] = None
top: Optional[int] = None
width: Optional[int] = None
height: Optional[int] = None
# For segmentation
points: Optional[List[Point]] = None
# Common fields
classId: int = CLASS_ID
stroke: str = "#00ff00"
strokeWidth: int = 3
fill: str = "rgba(0, 255, 0, 0.2)"
saved: bool = True
@field_validator("left", "top", "width", "height", mode="before")
def round_floats(cls, v):
return round(v) if v is not None else None
class SaveAnnotationsRequest(BaseModel):
annotations: List[Box] # Changed from 'boxes' to 'annotations'
image_name: str
original_width: int
original_height: int
class ImageInfo(BaseModel):
name: str # Relative path like train/image1.jpg
width: int
height: int
has_annotations: bool
# === Helpers ===
def get_image_path(image_name: str) -> str:
return os.path.join(IMAGE_ROOT, image_name)
def get_label_path(image_name: str) -> str:
return os.path.join(LABEL_ROOT, os.path.splitext(image_name)[0] + ".txt")
# === Core Functions ===
def load_yolo_annotations(image_path: str, label_path: str, detect: bool = False):
"""Load both bbox and segmentation annotations from YOLO format"""
try:
img = Image.open(image_path)
w, h = img.size
annotations = []
# Auto-detect if needed
normalise = False
if detect and not os.path.exists(label_path):
from .yolo_manager import YOLOManager
with YOLOManager() as yolo_manager:
weights_path = Config.yolo_trained_model_path
yolo_manager.load_model(weights_path)
yolo_manager.annotate_images(
image_paths=[image_path],
output_dir=IMAGE_LABEL_ROOT,
save_image=False,
label_path=label_path
)
normalise = True
if os.path.exists(label_path):
with open(label_path, "r") as f:
for line in f:
parts = list(map(float, line.strip().split()))
if len(parts) < 5:
continue
class_id = int(parts[0])
if len(parts) == 5: # Bounding box format
_, xc, yc, bw, bh = parts
left = int((xc - bw / 2) * w)
top = int((yc - bh / 2) * h)
width = int(bw * w)
height = int(bh * h)
annotations.append({
"type": "bbox",
"left": left,
"top": top,
"width": width,
"height": height,
"classId": class_id,
"stroke": "#00ff00",
"strokeWidth": 3,
"fill": "rgba(0, 255, 0, 0.2)",
"saved": True
})
elif len(parts) > 5 and len(parts) % 2 == 1: # Segmentation format
# Skip class_id, then pairs of x,y coordinates
coords = parts[1:]
if len(coords) >= 6: # At least 3 points
points = []
for i in range(0, len(coords), 2):
if i + 1 < len(coords):
x = coords[i] * w
y = coords[i + 1] * h
points.append({"x": x, "y": y})
annotations.append({
"type": "segmentation",
"points": points,
"classId": class_id,
"stroke": "#00ff00",
"strokeWidth": 3,
"fill": "rgba(0, 255, 0, 0.2)",
"saved": True
})
if normalise:
annotations = utils.normalize_segmentation(annotations)
save_yolo_annotations(
copy.deepcopy(annotations),
(w, h),
label_path
)
return annotations, (w, h)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading annotations: {str(e)} {traceback.format_exc()}")
def normalize_annotations(annotations: List[Union[Box, dict]]) -> List[Box]:
"""Convert all annotations to Box objects."""
normalized = []
for ann in annotations:
if isinstance(ann, Box):
normalized.append(ann)
elif isinstance(ann, dict):
normalized.append(Box(**ann))
else:
raise TypeError(f"Unsupported annotation type: {type(ann)}")
return normalized
def save_yolo_annotations(annotations: List[Box], original_size: tuple, label_path: str):
"""Save annotations in YOLO format (both bbox and segmentation)"""
annotations = normalize_annotations(annotations)
os.makedirs(os.path.dirname(label_path), exist_ok=True)
w, h = original_size
try:
with open(label_path, "w") as f:
# Generate YOLO format from annotations
for annotation in annotations:
if annotation.type == "bbox":
left, top, width, height = annotation.left, annotation.top, annotation.width, annotation.height
xc = (left + width / 2) / w
yc = (top + height / 2) / h
bw = width / w
bh = height / h
f.write(f"{annotation.classId} {xc:.6f} {yc:.6f} {bw:.6f} {bh:.6f}\n")
elif annotation.type == "segmentation" and annotation.points:
# Convert points to normalized coordinates
normalized_points = []
for point in annotation.points:
normalized_points.extend([point.x / w, point.y / h])
coords_str = " ".join(f"{coord:.6f}" for coord in normalized_points)
f.write(f"{annotation.classId} {coords_str}\n")
# Copy to image_labels directory
shutil.copy2(label_path, f"{IMAGE_LABEL_ROOT}/{os.path.basename(label_path)}")
return True
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error saving annotations: {str(e)} {traceback.format_exc()}")
def parse_yolo_line(line: str, image_width: int, image_height: int) -> Dict[str, Any]:
"""Parse a single YOLO format line and return annotation dict"""
parts = list(map(float, line.strip().split()))
if len(parts) < 5:
return None
class_id = int(parts[0])
if len(parts) == 5: # Bounding box
_, xc, yc, bw, bh = parts
left = int((xc - bw / 2) * image_width)
top = int((yc - bh / 2) * image_height)
width = int(bw * image_width)
height = int(bh * image_height)
return {
"type": "bbox",
"left": left,
"top": top,
"width": width,
"height": height,
"classId": class_id,
"stroke": "#00ff00",
"strokeWidth": 3,
"fill": "rgba(0, 255, 0, 0.2)",
"saved": True
}
elif len(parts) > 5 and len(parts) % 2 == 1: # Segmentation
coords = parts[1:]
if len(coords) >= 6: # At least 3 points
points = []
for i in range(0, len(coords), 2):
if i + 1 < len(coords):
x = coords[i] * image_width
y = coords[i + 1] * image_height
points.append({"x": x, "y": y})
return {
"type": "segmentation",
"points": points,
"classId": class_id,
"stroke": "#00ff00",
"strokeWidth": 3,
"fill": "rgba(0, 255, 0, 0.2)",
"saved": True
}
return None
# === API Routes ===
@app.get("/api/annotate/images", response_model=List[ImageInfo])
async def list_all_images():
image_info_list = []
for root, _, files in os.walk(IMAGE_ROOT):
for file in sorted(files):
if file.lower().endswith((".jpg", ".jpeg", ".png")):
image_path = os.path.join(root, file)
rel_path = os.path.relpath(image_path, IMAGE_ROOT)
label_path = get_label_path(rel_path)
img = Image.open(image_path)
width, height = img.size
image_info_list.append(ImageInfo(
name=rel_path.replace("\\", "/"),
width=width,
height=height,
has_annotations=os.path.exists(label_path)
))
return image_info_list
@app.get("/api/annotate/image/{image_name:path}")
async def get_image(image_name: str):
image_path = get_image_path(image_name)
if not os.path.exists(image_path):
raise HTTPException(status_code=404, detail="Image not found")
with Image.open(image_path) as img:
if img.mode != "RGB":
img = img.convert("RGB")
buffer = BytesIO()
img.save(buffer, format="JPEG")
img_data = base64.b64encode(buffer.getvalue()).decode()
return {
"image_data": f"data:image/jpeg;base64,{img_data}",
"width": img.width,
"height": img.height
}
@app.get("/api/annotate/annotations/{image_name:path}")
async def get_annotations(image_name: str):
image_path = get_image_path(image_name)
label_path = get_label_path(image_name)
if not os.path.exists(image_path):
raise HTTPException(status_code=404, detail="Image not found")
annotations, (width, height) = load_yolo_annotations(image_path, label_path)
return {
"annotations": annotations,
"original_width": width,
"original_height": height
}
@app.get("/api/annotate/detect_annotations/{image_name:path}")
async def get_detected_annotations(image_name: str):
image_path = get_image_path(image_name)
label_path = get_label_path(image_name)
if not os.path.exists(image_path):
raise HTTPException(status_code=404, detail="Image not found")
annotations, (width, height) = load_yolo_annotations(image_path, label_path, True)
return {
"annotations": annotations,
"original_width": width,
"original_height": height
}
@app.post("/api/annotate/annotations")
async def save_annotations(request: SaveAnnotationsRequest):
label_path = get_label_path(request.image_name)
success = save_yolo_annotations(
request.annotations,
(request.original_width, request.original_height),
label_path
)
return {"message": f"Saved {len(request.annotations)} annotations successfully"}
@app.delete("/api/annotate/annotations/{image_name:path}")
async def delete_annotations(image_name: str):
label_path = get_label_path(image_name)
if os.path.exists(label_path):
os.remove(label_path)
return {"message": "Annotations deleted"}
return {"message": "No annotations to delete"}
@app.get("/api/annotate/annotations/{image_name:path}/download")
async def download_annotations(image_name: str):
label_path = get_label_path(image_name)
if not os.path.exists(label_path):
raise HTTPException(status_code=404, detail="Annotations not found")
return FileResponse(
label_path,
media_type="text/plain",
filename=os.path.basename(label_path)
)
@app.post("/api/annotate/upload")
async def upload_image(file: UploadFile = File(...)):
if not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image")
file_path = os.path.join(IMAGE_ROOT, "train", file.filename)
with open(file_path, "wb") as f:
f.write(await file.read())
return {"message": f"Uploaded {file.filename} to train set"}