Spaces:
Build error
Build error
from .config import Config | |
from ultralytics import YOLO | |
from PIL import Image | |
import cv2 | |
from . import constant | |
from . import utils | |
import os | |
import shutil | |
import requests | |
from pathlib import Path | |
from . import common | |
class LLMPanelExtractor: | |
"""Handles image preprocessing operations.""" | |
def __init__(self, config: Config = None): | |
self.config = config or Config() | |
# Check if YOLO model exists; if not, download it to the specified path | |
yolo_base_model_path = f'{self.config.yolo_base_model_path}_best.pt' | |
# yolo_base_model_path = f'{self.config.yolo_trained_model_path}' | |
if not os.path.exists(yolo_base_model_path): | |
url = "https://huggingface.co/mosesb/best-comic-panel-detection/resolve/main/best.pt" | |
print(f"Downloading YOLO model to {yolo_base_model_path}...") | |
response = requests.get(url) | |
response.raise_for_status() # Raise an error if the download fails | |
with open(yolo_base_model_path, "wb") as f: | |
f.write(response.content) | |
print("YOLO model downloaded successfully.") | |
self.yolo_model = YOLO(yolo_base_model_path) | |
os.makedirs(self.config.output_folder, exist_ok=True) | |
def extract_bounding_boxes(self, detection_result_boxes): | |
"""Extract bounding box coordinates from YOLO detection results.""" | |
bounding_boxes = [] | |
for detection_box in detection_result_boxes.xyxy: | |
# Extract coordinates | |
x_min, y_min, x_max, y_max = map(int, detection_box) | |
bounding_boxes.append((x_min, y_min, x_max, y_max)) | |
return bounding_boxes | |
def crop_and_save_detected_panels(self, detected_boxes): | |
"""Crop detected boxes and save them in separate folders""" | |
if len(detected_boxes) == 0: | |
print(f"No boxes detected for {self.config.org_input_path}") | |
return | |
source_image = cv2.imread(self.config.org_input_path) | |
for box_coordinates in detected_boxes: | |
# Extract coordinates | |
x_min, y_min, x_max, y_max = box_coordinates | |
# Crop the image | |
cropped_panel = source_image[y_min:y_max, x_min:x_max] | |
# Save cropped image | |
constant.INDEX += 1 | |
panel_output_path = f"{self.config.output_folder}/{constant.INDEX:04d}_panel_{x_min, y_min, x_max, y_max}.jpg" | |
cv2.imwrite(panel_output_path, cropped_panel) | |
def pre_all_processed_boxes(self, all_processed_boxes, image_width, image_height): | |
all_processed_boxes = utils.extend_boxes_to_image_border( | |
all_processed_boxes, | |
(image_width, image_height), | |
self.config.min_width_ratio, | |
self.config.min_height_ratio | |
) | |
all_processed_boxes = sorted(all_processed_boxes, key=lambda box: (box[1], box[0])) # sort by y_min, then x_min | |
all_processed_boxes = utils.extend_to_nearby_boxes( | |
all_processed_boxes, | |
(image_width, image_height), | |
self.config.min_width_ratio, | |
self.config.min_height_ratio | |
) | |
return all_processed_boxes | |
def detect_and_extract_panels(self, input_image_path=None, existing_boxes=None, confidence_threshold=0.9): | |
"""Main method to detect and extract panels from an image.""" | |
if not input_image_path: | |
input_image_path = self.config.org_input_path | |
# Get image dimensions | |
with Image.open(input_image_path) as input_image: | |
image_width, image_height = input_image.size | |
# Run YOLO detection | |
detection_results = self.yolo_model.predict(source=input_image_path, device=common.get_device()) | |
first_detection_result = detection_results[0] | |
newly_detected_boxes = None | |
all_processed_boxes = [] | |
# Add existing boxes if provided | |
if existing_boxes: | |
all_processed_boxes.extend(existing_boxes) | |
# Filter boxes by confidence threshold | |
if first_detection_result.boxes is not None: | |
high_confidence_filter = first_detection_result.boxes.conf >= confidence_threshold | |
if high_confidence_filter.sum() > 0: | |
first_detection_result.boxes = first_detection_result.boxes[high_confidence_filter] | |
newly_detected_boxes = self.extract_bounding_boxes(first_detection_result.boxes) | |
newly_detected_boxes = utils.is_valid_panel((image_width, image_height), newly_detected_boxes, self.config.min_width_ratio, self.config.min_height_ratio) | |
if newly_detected_boxes: | |
all_processed_boxes.extend(self.extract_bounding_boxes(first_detection_result.boxes)) | |
# Process and extend boxes | |
all_processed_boxes = self.pre_all_processed_boxes(all_processed_boxes, image_width, image_height) | |
# Crop and save detected panels | |
self.crop_and_save_detected_panels(newly_detected_boxes) | |
# Save prediction visualization | |
visualization_result = first_detection_result.plot(masks=False) | |
constant.INDEX += 1 | |
debug_output_path = f"{self.config.output_folder}/{constant.INDEX:04d}_debug.jpg" | |
Image.fromarray(visualization_result[..., ::-1]).save(debug_output_path) | |
# Create black and white mask | |
constant.INDEX += 1 | |
masked_output_path = f"{self.config.output_folder}/{constant.INDEX:04d}_draw_black.jpg" | |
masked_image_path = utils.draw_black(self.config.org_input_path, all_processed_boxes, masked_output_path, stripe=False) | |
return masked_image_path, newly_detected_boxes | |
# Process boxes even if no new detections | |
all_processed_boxes = self.pre_all_processed_boxes(all_processed_boxes, image_width, image_height) | |
constant.INDEX += 1 | |
masked_output_path = f"{self.config.output_folder}/{constant.INDEX:04d}_draw_black.jpg" | |
masked_image_path = utils.draw_black(self.config.org_input_path, all_processed_boxes, masked_output_path, stripe=False) | |
return masked_image_path, newly_detected_boxes | |
def check_for_remaining_similarity(self, current_processed_image_path, existing_boxes): | |
# Get image dimensions | |
with Image.open(self.config.org_input_path) as input_image: | |
image_width, image_height = input_image.size | |
all_processed_boxes = self.pre_all_processed_boxes(existing_boxes, image_width, image_height) | |
constant.INDEX += 1 | |
similar_remaining_regions_path = f"{self.config.output_folder}/{constant.INDEX:04d}_remaining_similarity_debug.jpg" | |
similar_remaining_box = utils.find_similar_remaining_regions(all_processed_boxes, (image_width, image_height), similar_remaining_regions_path) | |
if similar_remaining_box: | |
similar_remaining_box = utils.is_valid_panel((image_width, image_height), similar_remaining_box, self.config.min_width_ratio, self.config.min_height_ratio) | |
if similar_remaining_box: | |
self.crop_and_save_detected_panels(similar_remaining_box) | |
existing_boxes.extend(similar_remaining_box) | |
all_processed_boxes = self.pre_all_processed_boxes(existing_boxes, image_width, image_height) | |
constant.INDEX += 1 | |
current_processed_image_path = f"{self.config.output_folder}/{constant.INDEX:04d}_remaining_similarity_draw_black.jpg" | |
current_processed_image_path = utils.draw_black(self.config.org_input_path, all_processed_boxes, current_processed_image_path, stripe=False) | |
return current_processed_image_path, existing_boxes | |
def extract_panel_via_llm(input_image_path, config=None, reset=True): | |
"""Main function to extract panels using various image processing techniques.""" | |
# Initialize configuration | |
extractor_config = config or Config() | |
extractor_config.org_input_path = input_image_path | |
# Clean output folder | |
if reset: | |
if Path(extractor_config.output_folder).exists(): | |
shutil.rmtree(extractor_config.output_folder, ignore_errors=True) | |
Path(extractor_config.output_folder).mkdir(exist_ok=True) | |
# Initialize extractor | |
panel_extractor = LLMPanelExtractor(extractor_config) | |
current_processed_image_path = extractor_config.org_input_path | |
accumulated_detected_boxes = [] | |
all_processed_boxes = [] | |
# Get original image dimensions | |
with Image.open(current_processed_image_path) as original_image: | |
original_width, original_height = original_image.size | |
# Define image processing techniques to try | |
processing_techniques = [ | |
{ | |
'name': 'clahe', | |
'function': utils.convert_to_clahe, | |
'confidence_level': 1.0, | |
'description': 'CLAHE (Contrast Limited Adaptive Histogram Equalization)' | |
}, | |
{ | |
'name': 'grayscale', | |
'function': utils.convert_to_grayscale_pil, | |
'confidence_level': 1.0, | |
'description': 'Grayscale conversion' | |
}, | |
{ | |
'name': 'lab_l', | |
'function': utils.convert_to_lab_l, | |
'confidence_level': 1.0, | |
'description': 'LAB L-channel extraction' | |
}, | |
{ | |
'name': 'group_color', | |
'function': utils.convert_to_group_colors, | |
'confidence_level': 0.1, | |
'image_path': extractor_config.org_input_path, | |
'description': 'Group Color extraction' | |
} | |
] | |
# Process with different techniques until white ratio threshold is met | |
for technique in processing_techniques: | |
iteration_count = 0 | |
confidence_level = technique["confidence_level"] | |
if technique.get("image_path", None) and utils.box_covered_ratio(panel_extractor.pre_all_processed_boxes(accumulated_detected_boxes, original_width, original_height), (original_width, original_height)) < 0.95: | |
current_processed_image_path = technique.get("image_path") | |
while (utils.box_covered_ratio(panel_extractor.pre_all_processed_boxes(accumulated_detected_boxes, original_width, original_height), (original_width, original_height)) < 0.95 and confidence_level > 0): | |
print(f"\n{technique['description']} process iteration: {iteration_count} confidence level: {confidence_level}") | |
iteration_count += 1 | |
confidence_level -= 0.1 | |
# Apply image processing technique | |
constant.INDEX += 1 | |
processed_output_path = f"{extractor_config.output_folder}/{constant.INDEX:04d}_convert_to_{technique['name']}.jpg" | |
current_processed_image_path = technique['function'](current_processed_image_path, processed_output_path) | |
# Run panel detection on processed image | |
current_processed_image_path, newly_detected_boxes = panel_extractor.detect_and_extract_panels( | |
input_image_path=current_processed_image_path, | |
existing_boxes=accumulated_detected_boxes, | |
confidence_threshold=confidence_level | |
) | |
if newly_detected_boxes: | |
accumulated_detected_boxes.extend(newly_detected_boxes) | |
current_processed_image_path, accumulated_detected_boxes = panel_extractor.check_for_remaining_similarity(current_processed_image_path, accumulated_detected_boxes) | |
all_processed_boxes = panel_extractor.pre_all_processed_boxes(accumulated_detected_boxes, original_width, original_height) | |
remain_boxes = utils.get_remaining_areas((original_width, original_height), all_processed_boxes) | |
if remain_boxes: | |
remain_boxes = utils.is_valid_panel((original_width, original_height), remain_boxes, extractor_config.min_width_ratio, extractor_config.min_height_ratio) | |
if remain_boxes: | |
panel_extractor.crop_and_save_detected_panels(remain_boxes) | |
all_processed_boxes.extend(remain_boxes) | |
accumulated_detected_boxes.extend(remain_boxes) | |
all_path = [file for file in os.listdir(extractor_config.output_folder) if "_panel_" in file] | |
print(f"Processing complete. Final result saved to: {extractor_config.output_folder}") | |
print(f"Total panels detected: {len(all_path)}") | |
return all_path, accumulated_detected_boxes, all_processed_boxes | |
if __name__ == "__main__": | |
import argparse | |
# Parse command-line arguments | |
argument_parser = argparse.ArgumentParser(description="Run panel extractor on an image") | |
argument_parser.add_argument("--input", type=str, required=True, help="Path to input image") | |
parsed_arguments = argument_parser.parse_args() | |
final_result_path, total_detected_boxes = extract_panel_via_llm(parsed_arguments.input) |