jebin2's picture
moved met
f0dcf93
from typing import List, Tuple
from .config import Config
import numpy as np
import cv2
from dataclasses import dataclass
import os
import re
from .utils import remove_duplicate_boxes, count_panels_inside, extend_boxes_to_image_border
@dataclass
class PanelData:
"""Represents an extracted comic panel."""
x_start: int
y_start: int
x_end: int
y_end: int
width: int
height: int
area: int
@classmethod
def from_coordinates(cls, x1: int, y1: int, x2: int, y2: int) -> 'PanelData':
"""Create PanelData from coordinates."""
return cls(
x_start=x1,
y_start=y1,
x_end=x2,
y_end=y2,
width=x2 - x1,
height=y2 - y1,
area=(x2 - x1) * (y2 - y1)
)
class PanelExtractor:
"""Handles comic panel extraction using black percentage analysis."""
def __init__(self, config: Config):
self.config = config
def extract_panels(self, dilated_path: str, row_thresh: int = 20, col_thresh: int = 20) -> Tuple[List[np.ndarray], List[PanelData]]:
"""Extract comic panels using black percentage scan."""
dilated = cv2.imread(dilated_path, cv2.IMREAD_GRAYSCALE)
original = cv2.imread(self.config.input_path)
if dilated is None or original is None:
raise FileNotFoundError("Could not load dilated or original image")
height, width = dilated.shape
# Find row gutters and panel rows
panel_rows = self._find_panel_rows(dilated, row_thresh)
# Extract panels from each row
all_panels = []
for y1, y2 in panel_rows:
row_panels = self._extract_panels_from_row(dilated, y1, y2, col_thresh)
all_panels.extend(row_panels)
# Filter panels by size
filtered_panels = self._filter_panels_by_size(
all_panels, width, height
)
# Extract panel images and save
panel_images, panel_data, all_panel_path = self._save_panels(
filtered_panels, original, width, height
)
return panel_images, panel_data, all_panel_path
def _find_panel_rows(self, dilated: np.ndarray, row_thresh: int) -> List[Tuple[int, int]]:
"""Find panel rows where consecutive rows meet the threshold and height constraint."""
height, width = dilated.shape
# Calculate black percentage for each row
row_black_percentage = np.sum(dilated == 0, axis=1) / width * 100
# Find all rows meeting threshold
black_rows = [y for y, p in enumerate(row_black_percentage) if p >= row_thresh]
# Forcefully include first and last row
if 0 not in black_rows:
black_rows.insert(0, 0)
if (height) not in black_rows:
black_rows.append(height)
print(f'πŸ“„ Row Points:: {black_rows}')
# Group consecutive rows into gutters
row_gutters = []
if black_rows:
start_row = black_rows[0]
for i, end_row in enumerate(black_rows):
# Only extend if combined height meets min_height_ratio
combined_height = end_row - start_row
if combined_height / height >= self.config.min_height_ratio:
print(f'πŸ“„ {i+1}) Start: {start_row:04d} | End: {end_row:04d} | Total: {combined_height:04d} | Ratio: {(combined_height / height):04f}')
row_gutters.append((start_row, end_row))
start_row = end_row
elif len(black_rows) == i + 1:
row_gutters[-1] = (row_gutters[-1][0], end_row)
print(f"βœ… Detected panel row gutters: {row_gutters}")
# ⚑ Draw detected rows on a color copy
visual = cv2.cvtColor(dilated, cv2.COLOR_GRAY2BGR)
for (y1, y2) in row_gutters:
cv2.line(visual, (0, y1), (width, y1), (0, 255, 0), thickness=5)
cv2.line(visual, (0, y2), (width, y2), (0, 0, 255), thickness=5)
# Save visualization
output_path = f"{self.config.output_folder}/row_gutters_visualization.jpg"
cv2.imwrite(output_path, visual)
print(f"πŸ“„ Saved row gutter visualization: {output_path}")
return row_gutters
def _find_panel_columns(self, dilated: np.ndarray, col_thresh: int) -> List[Tuple[int, int]]:
"""
Find panel columns where consecutive columns meet the threshold and width constraint.
"""
height, width = dilated.shape
# Calculate black percentage for each column
col_black_percentage = np.sum(dilated == 0, axis=0) / height * 100
# Find all columns meeting threshold
black_cols = [x for x, p in enumerate(col_black_percentage) if p >= col_thresh]
# Forcefully include first and last column
if 0 not in black_cols:
black_cols.insert(0, 0)
if (width - 1) not in black_cols:
black_cols.append(width - 1)
# Group consecutive columns into gutters
col_gutters = []
if black_cols:
start_col = black_cols[0]
prev_col = black_cols[0]
for x in black_cols:
if x != start_col:
# Only extend if combined width meets min_width_ratio
combined_width = x - start_col + 1
if combined_width / width >= self.config.min_width_ratio:
prev_col = x
col_gutters.append((start_col, prev_col))
start_col = x
if start_col != prev_col:
col_gutters.append((start_col, prev_col)) # Add last gutter
print(f"βœ… Detected panel column gutters: {col_gutters}")
# ⚑ Draw detected columns on a color copy
visual = cv2.cvtColor(dilated, cv2.COLOR_GRAY2BGR)
for (x1, x2) in col_gutters:
cv2.line(visual, (x1, 0), (x1, height), (255, 0, 0), thickness=5)
cv2.line(visual, (x2, 0), (x2, height), (0, 255, 255), thickness=5)
# Save visualization
output_path = f"{self.config.output_folder}/col_gutters_visualization.jpg"
cv2.imwrite(output_path, visual)
print(f"πŸ“„ Saved column gutter visualization: {output_path}")
return col_gutters
def _extract_panels_from_row(self, dilated: np.ndarray, y1: int, y2: int,
col_thresh: int) -> List[Tuple[int, int, int, int]]:
"""Extract panels from a single row."""
width = dilated.shape[1]
row_slice = dilated[y1:y2, :]
col_black_percentage = np.sum(row_slice == 0, axis=0) / (y2 - y1) * 100
# Find column gutters
col_gutters = []
in_gutter = False
for x, percent_black in enumerate(col_black_percentage):
if percent_black >= col_thresh and not in_gutter:
start_col = x
in_gutter = True
elif percent_black < col_thresh and in_gutter:
end_col = x
col_gutters.append((start_col, end_col))
in_gutter = False
# Convert gutters to panel columns
panel_cols = []
prev_end = 0
for start, end in col_gutters:
if start - prev_end > 10: # Minimum column width
panel_cols.append((prev_end, start))
prev_end = end
if width - prev_end > 10:
panel_cols.append((prev_end, width))
return [(x1, y1, x2, y2) for x1, x2 in panel_cols]
def _filter_panels_by_size(self, panels: List[Tuple[int, int, int, int]], width: int, height: int) -> List[Tuple[int, int, int, int]]:
"""Filter panels by size constraints."""
new_panel = []
for x1, y1, x2, y2 in panels:
w = x2 - x1 # Corrected
h = y2 - y1 # Corrected
if (
w >= self.config.min_width_ratio * width and
h >= self.config.min_height_ratio * height
):
new_panel.append((x1, y1, x2, y2))
return new_panel
def count_panel_files(self, folder_path: str) -> int:
"""
Count the number of files in a folder that start with 'panel_'.
Args:
folder_path: Path to the folder to search.
Returns:
Number of files starting with 'panel_'.
"""
if not os.path.exists(folder_path):
print(f"Folder does not exist: {folder_path}")
return 0
return len([
fname for fname in os.listdir(folder_path)
if fname.startswith("panel_") and os.path.isfile(os.path.join(folder_path, fname))
])
def load_existing_panels_from_folder(self, folder: str) -> List[Tuple[int, int, int, int]]:
"""
Parses filenames like 'panel_1_(1006, 176, 1757, 1085).jpg' and extracts coordinates.
"""
pattern = re.compile(r"panel_\d+_\((\d+), (\d+), (\d+), (\d+)\)\.jpg")
coords = []
for fname in os.listdir(folder):
match = pattern.match(fname)
if match:
coords.append(tuple(map(int, match.groups())))
return coords
def limit_coord(self, new_coord, existing_coords):
"""
Trim a new panel box from any side to completely avoid overlapping with existing panels.
Args:
new_coord: Tuple (x1, y1, x2, y2) representing the new panel box
existing_coords: List of tuples [(x1, y1, x2, y2), ...] representing existing panels
Returns:
Tuple (x1, y1, x2, y2) representing the trimmed panel box with no overlaps
"""
if not existing_coords:
return new_coord
x1, y1, x2, y2 = new_coord
# Ensure valid input coordinates
if x2 <= x1 or y2 <= y1:
return new_coord
# Keep trimming until no overlaps exist
current_box = (x1, y1, x2, y2)
for existing_box in existing_coords:
ex1, ey1, ex2, ey2 = existing_box
cx1, cy1, cx2, cy2 = current_box
# Check if current box overlaps with this existing box
if self.boxes_overlap(current_box, existing_box):
# Calculate possible trim options and their resulting box sizes
trim_options = []
# Option 1: Trim from left (move x1 right)
if cx1 < ex2 and cx2 > ex2:
new_x1 = ex2
if new_x1 < cx2: # Ensure valid box
area = (cx2 - new_x1) * (cy2 - cy1)
trim_options.append(('left', (new_x1, cy1, cx2, cy2), area))
# Option 2: Trim from right (move x2 left)
if cx2 > ex1 and cx1 < ex1:
new_x2 = ex1
if new_x2 > cx1: # Ensure valid box
area = (new_x2 - cx1) * (cy2 - cy1)
trim_options.append(('right', (cx1, cy1, new_x2, cy2), area))
# Option 3: Trim from top (move y1 down)
if cy1 < ey2 and cy2 > ey2:
new_y1 = ey2
if new_y1 < cy2: # Ensure valid box
area = (cx2 - cx1) * (cy2 - new_y1)
trim_options.append(('top', (cx1, new_y1, cx2, cy2), area))
# Option 4: Trim from bottom (move y2 up)
if cy2 > ey1 and cy1 < ey1:
new_y2 = ey1
if new_y2 > cy1: # Ensure valid box
area = (cx2 - cx1) * (new_y2 - cy1)
trim_options.append(('bottom', (cx1, cy1, cx2, new_y2), area))
# Choose the trim option that preserves the largest area
if trim_options:
# Sort by area (descending) to keep the largest possible box
trim_options.sort(key=lambda x: x[2], reverse=True)
best_option = trim_options[0]
current_box = best_option[1]
else:
# If no valid trim options, return minimal box
return (cx1, cy1, cx1 + 1, cy1 + 1)
return current_box
def boxes_overlap(self, box1, box2):
"""
Check if two boxes overlap.
Args:
box1, box2: Tuples (x1, y1, x2, y2)
Returns:
Boolean indicating if boxes overlap
"""
x1, y1, x2, y2 = box1
ex1, ey1, ex2, ey2 = box2
return not (x2 <= ex1 or x1 >= ex2 or y2 <= ey1 or y1 >= ey2)
def _save_panels(self, panels: List[Tuple[int, int, int, int]], original: np.ndarray, width: int, height: int) -> Tuple[List[np.ndarray], List[PanelData], List[str]]:
"""Save panel images and return panel data."""
original_image = cv2.imread(self.config.input_path)
visual_output = original.copy()
panel_images = []
panel_data = []
all_panel_path = []
panel_idx = self.count_panel_files(self.config.output_folder)
black_overlay_input = cv2.imread(self.config.black_overlay_input_path)
image_area = width * height
maybe_full_page_panel = None
# Load existing panels from disk
existing_coords = self.load_existing_panels_from_folder(self.config.output_folder)
for idx, (x1, y1, x2, y2) in enumerate(panels, 1):
# Extract panel image from black_overlay_input
panel_img = black_overlay_input[y1:y2, x1:x2]
# Check for mostly black/white
gray = cv2.cvtColor(panel_img, cv2.COLOR_BGR2GRAY)
total_pixels = gray.size
black_pixels = np.sum(gray < 30)
white_pixels = np.sum(gray > 240)
black_ratio = black_pixels / total_pixels
white_ratio = white_pixels / total_pixels
if black_ratio > 0.8:
print(f"⚠️ Skipping panel #{idx} β€” {round(black_ratio * 100, 2)}% black")
continue
elif white_ratio > 0.9:
print(f"⚠️ Skipping panel #{idx} β€” {round(white_ratio * 100, 2)}% white")
continue
else:
print(f"βœ… Panel #{idx} β€” {round(black_ratio * 100, 2)}% black, {round(white_ratio * 100, 2)}% white")
panel_area = (x2 - x1) * (y2 - y1)
if panel_area >= 0.9 * image_area:
print(f"⚠️ Panel #{idx} covers β‰₯90% of the image β€” marked for potential use only")
maybe_full_page_panel = (idx, (x1, y1, x2, y2))
continue
# Check for full containment in existing and current session
already_saved_coords = existing_coords + [ (pd.x_start, pd.y_start, pd.x_end, pd.y_end) for pd in panel_data ]
# 1. Skip if duplicate
is_duplicate, _ = remove_duplicate_boxes(already_saved_coords, (x1, y1, x2, y2))
if is_duplicate:
print(f"⚠️ Skipping panel #{idx} β€” fully contained in existing panel")
continue
# 2. Skip if this panel contains β‰₯1 other panels
contained_count = count_panels_inside((x1, y1, x2, y2), already_saved_coords, height, width)
if contained_count >= 1:
print(f"⚠️ Skipping panel #{idx} β€” contains {contained_count} other panels inside")
continue
x1, y1, x2, y2 = extend_boxes_to_image_border([(x1, y1, x2, y2)], [height, width], self.config.min_width_ratio, self.config.min_height_ratio)[0]
x1, y1, x2, y2 = self.limit_coord((x1, y1, x2, y2), already_saved_coords)
if not self._filter_panels_by_size(
[(x1, y1, x2, y2)], width, height
):
continue
# Save panel
panel_img = original_image[y1:y2, x1:x2]
panel_images.append(panel_img)
panel_info = PanelData.from_coordinates(x1, y1, x2, y2)
panel_data.append(panel_info)
panel_idx += 1
panel_path = f'{self.config.output_folder}/panel_{panel_idx}_{(x1, y1, x2, y2)}.jpg'
cv2.imwrite(str(panel_path), panel_img)
all_panel_path.append(panel_path)
cv2.rectangle(visual_output, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(visual_output, f"#{idx}", (x1+5, y1+25),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# If no valid panels and full-page backup exists
if not panel_images and maybe_full_page_panel and panel_idx == 0:
idx, (x1, y1, x2, y2) = maybe_full_page_panel
panel_img = original_image[y1:y2, x1:x2]
panel_images.append(panel_img)
panel_info = PanelData.from_coordinates(x1, y1, x2, y2)
panel_data.append(panel_info)
panel_idx += 1
panel_path = f'{self.config.output_folder}/panel_{panel_idx}_{(x1, y1, x2, y2)}.jpg'
cv2.imwrite(str(panel_path), panel_img)
all_panel_path.append(panel_path)
cv2.rectangle(visual_output, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(visual_output, f"#full", (x1+5, y1+25),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 0, 0), 2)
print(f"βœ… Saved full-page panel as fallback")
# Save final visualization
visual_path = f'{self.config.output_folder}/panels_visualization.jpg'
cv2.imwrite(str(visual_path), visual_output)
print(f"βœ… Extracted {len(panel_images)} panels after filtering.")
return panel_images, panel_data, all_panel_path