Spaces:
Running
Running
from argparse import ArgumentParser | |
from logging import getLogger | |
from pathlib import Path | |
import yaml | |
from characters import get_character | |
from pipeline import SingingDialoguePipeline | |
logger = getLogger(__name__) | |
def get_parser(): | |
parser = ArgumentParser() | |
parser.add_argument("--query_audios", nargs="+", type=Path, required=True) | |
parser.add_argument( | |
"--config_path", type=Path, default="config/cli/yaoyin_default.yaml" | |
) | |
parser.add_argument("--output_audio_folder", type=Path, required=True) | |
parser.add_argument("--eval_results_csv", type=Path, required=True) | |
return parser | |
def load_config(config_path: Path): | |
with open(config_path, "r") as f: | |
config = yaml.safe_load(f) | |
return config | |
def main(): | |
parser = get_parser() | |
args = parser.parse_args() | |
config = load_config(args.config_path) | |
pipeline = SingingDialoguePipeline(config) | |
speaker = config["speaker"] | |
language = config["language"] | |
character_name = config["prompt_template_character"] | |
character = get_character(character_name) | |
prompt_template = character.prompt | |
args.output_audio_folder.mkdir(parents=True, exist_ok=True) | |
args.eval_results_csv.parent.mkdir(parents=True, exist_ok=True) | |
with open(args.eval_results_csv, "a") as f: | |
f.write( | |
f"query_audio,asr_model,llm_model,svs_model,melody_source,language,speaker,output_audio,asr_text,llm_text,metrics\n" | |
) | |
try: | |
for query_audio in args.query_audios: | |
output_audio = args.output_audio_folder / f"{query_audio.stem}_response.wav" | |
results = pipeline.run( | |
query_audio, | |
language, | |
prompt_template, | |
speaker, | |
output_audio_path=output_audio, | |
) | |
metrics = pipeline.evaluate(output_audio, **results) | |
metrics.update(results.get("metrics", {})) | |
metrics_str = ",".join([f"{metrics[k]}" for k in sorted(metrics.keys())]) | |
logger.info( | |
f"Input: {query_audio}, Output: {output_audio}, ASR results: {results['asr_text']}, LLM results: {results['llm_text']}" | |
) | |
with open(args.eval_results_csv, "a") as f: | |
f.write( | |
f"{query_audio},{config['asr_model']},{config['llm_model']},{config['svs_model']},{config['melody_source']},{config['language']},{config['speaker']},{output_audio},{results['asr_text']},{results['llm_text']},{metrics_str}\n" | |
) | |
except Exception as e: | |
logger.error(f"Error in main: {e}") | |
breakpoint() | |
raise e | |
if __name__ == "__main__": | |
main() | |