jiuhai's picture
Upload 59 files
6858cdd verified
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import (
AutoConfig,
AutoModelForCausalLM,
Qwen3Config,
Qwen3ForCausalLM,
Qwen3Model,
)
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import CausalLMOutputWithPast
from blip3o.model.blip3o_arch import blip3oMetaForCausalLM, blip3oMetaModel
from diffusers.training_utils import compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers import DDPMScheduler, DDIMScheduler, LCMScheduler, FlowMatchEulerDiscreteScheduler, DPMSolverMultistepScheduler
import numpy as np
from tqdm import tqdm
import PIL
from blip3o.utils import rank0_print
def numpy_to_pil(images: np.ndarray):
"""
Convert a NumPy array of shape (batch, height, width, channels) to a list of PIL Images.
"""
pil_images = []
for img in images:
img_uint8 = (img * 255).round().astype("uint8")
if img_uint8.shape[2] == 1:
img_uint8 = img_uint8[..., 0]
pil_images.append(PIL.Image.fromarray(img_uint8))
return pil_images
class blip3oQwenConfig(Qwen3Config):
model_type = "blip3o_qwen_grpo"
class blip3oQwenModel(blip3oMetaModel, Qwen3Model):
config_class = blip3oQwenConfig
def __init__(self, config: Qwen3Config):
super(blip3oQwenModel, self).__init__(config)
class blip3oQwenForGRPOLM(Qwen3ForCausalLM, blip3oMetaForCausalLM):
config_class = blip3oQwenConfig
def __init__(self, config):
Qwen3ForCausalLM.__init__(self, config)
config.model_type = "blip3o_qwen"
config.rope_scaling = None
self.model = blip3oQwenModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def get_sigmas(self, timesteps, device, n_dim=4, dtype=torch.float32):
sigmas = self.model.noise_scheduler.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = self.model.noise_scheduler.timesteps.to(device)
timesteps = timesteps.to(device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def mask_drop(self, latents, drop_prob=0.1):
if drop_prob <= 0:
return latents
mask = torch.bernoulli(torch.zeros(latents.shape[0], device=latents.device, dtype=latents.dtype) + drop_prob)
while len(mask.shape) < len(latents.shape):
mask = mask.unsqueeze(-1)
mask = 1 - mask # need to flip 0 <-> 1
return latents * mask
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
modalities: Optional[List[str]] = ["image"],
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes=image_sizes)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
if images is not None:
inputs["images"] = images
if image_sizes is not None:
inputs["image_sizes"] = image_sizes
return inputs
@torch.no_grad()
def decode_latents(self, latents, normalize=True, return_tensor=False):
if self.model.sana_vae is not None:
latents = latents / self.model.sana_vae.config.scaling_factor
if "shift_factor" in self.model.sana_vae.config and self.model.sana_vae.config.shift_factor is not None:
latents = latents + self.model.sana_vae.config.shift_factor
samples = self.model.sana_vae.decode(latents).sample
else:
samples = latents
if normalize:
samples = (samples / 2 + 0.5).clamp(0, 1)
else:
samples = samples.clamp(-1, 1)
if return_tensor:
return samples
samples = samples.cpu().permute(0, 2, 3, 1).float().numpy()
samples = numpy_to_pil(samples)
return samples
@torch.no_grad()
def generate_images(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
max_new_tokens: Optional[torch.Tensor] = None,
temperature: Optional[torch.Tensor] = None,
top_p: Optional[torch.Tensor] = None,
top_k: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
modalities: Optional[List[str]] = ["image"],
guidance_scale: float = 2.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
num_inference_steps: int = 30,
num_images_per_prompt: int = 1,
return_tensor=False,
enable_progress_bar=False,
**kwargs,
):
position_ids = kwargs.pop("position_ids", None)
# attention_mask = (inputs != -100).long()
gen_ids = super(blip3oQwenForGRPOLM, self).generate(
input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=1.0,
attention_mask=attention_mask,
)
# breakpoint()
with torch.no_grad():
outs = self.model(
input_ids = gen_ids,
output_hidden_states = True,
return_dict = True,
)
hidden_states = outs.hidden_states[-1]
start_pos = (gen_ids == self.config.image_start_tag_id).float().argmax(dim=1)
end_pos = (gen_ids == self.config.image_end_tag_id).float().argmax(dim=1)
selected_hidden_states = []
for b in range(hidden_states.size(0)):
start = start_pos[b].item() + 1
# end = end_pos[b].item()
selected_hidden_states.append(hidden_states[b, start:, :])
pred_latent = torch.stack(selected_hidden_states, dim=0)
img_hidden_states_null = torch.zeros_like(pred_latent)
pred_latent = torch.cat([img_hidden_states_null, pred_latent], 0)
## sample images from here
device = next(self.parameters()).device
dtype = next(self.parameters()).dtype
bsz = len(pred_latent) // 2
# latent_size = self.config.input_size
latent_size = 32
latent_channels = self.model.sana.config.in_channels
latents = randn_tensor(
shape=(bsz * num_images_per_prompt, latent_channels, latent_size, latent_size),
generator=None,
device=device,
dtype=torch.bfloat16,
)
# set step values
if isinstance(self.model.noise_scheduler, FlowMatchEulerDiscreteScheduler):
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
self.model.noise_scheduler.set_timesteps(num_inference_steps, sigmas=sigmas)
else:
self.model.noise_scheduler.set_timesteps(num_inference_steps)
# pred_latent = torch.cat([pred_latent] * 2)
# Convert to float32 before saving
for t in tqdm(self.model.noise_scheduler.timesteps, desc="Sampling images", disable=not enable_progress_bar):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = latent_model_input.to(pred_latent.dtype)
if hasattr(self.model.noise_scheduler.timesteps, "scale_model_input"):
latent_model_input = self.model.noise_scheduler.scale_model_input(latent_model_input, t)
# predict noise model_output
noise_pred = self.model.sana(
hidden_states=latent_model_input,
encoder_hidden_states=self.model.diffusion_connector(pred_latent),
timestep=t.unsqueeze(0).expand(latent_model_input.shape[0]).to(latents.device),
encoder_attention_mask=None
).sample
noise_pred_uncond, noise_pred= noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
# compute previous image: x_t -> x_t-1
latents = self.model.noise_scheduler.step(noise_pred, t, latents).prev_sample
samples = self.decode_latents(latents.to(self.model.sana_vae.dtype) if self.model.sana_vae is not None else latents, return_tensor=return_tensor)
return gen_ids, samples
AutoConfig.register("blip3o_qwen_grpo", blip3oQwenConfig)
AutoModelForCausalLM.register(blip3oQwenConfig, blip3oQwenForGRPOLM)