Mesh_Rigger / UniRig /src /data /vertex_group.py
jkorstad's picture
Correctly add UniRig source files
f499d3b
import platform
import os
if platform.system() == "Linux":
os.environ['PYOPENGL_PLATFORM'] = 'egl'
from typing import Dict, List, Tuple
from dataclasses import dataclass
from collections import defaultdict
from abc import ABC, abstractmethod
import numpy as np
from numpy import ndarray
from scipy.spatial import cKDTree
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import shortest_path, connected_components
from .asset import Asset
from .spec import ConfigSpec
@dataclass
class VertexGroupConfig(ConfigSpec):
'''
Config to sample vertex group.
'''
# names
names: List[str]
# kwargs
kwargs: Dict[str, Dict]
@classmethod
def parse(cls, config) -> 'VertexGroupConfig':
cls.check_keys(config)
return VertexGroupConfig(
names=config.get('names', []),
kwargs=config.get('kwargs', {}),
)
class VertexGroup(ABC):
@abstractmethod
def __init__(self, **kwargs):
pass
@abstractmethod
def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
pass
class VertexGroupSkin(VertexGroup):
'''
Capture skin.
'''
def __init__(self, **kwargs):
pass
def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
return {
'skin': asset.skin / (asset.skin.sum(axis=-1, keepdims=True) + 1e-6),
}
class VertexGroupGeodesicDistance(VertexGroup):
'''
Calculate geodesic distance.
'''
def __init__(self, **kwargs):
self.deterministic = kwargs.get('deterministic', False)
self.soft_mask = kwargs.get('soft_mask', False)
def _prepare(
self,
joints: ndarray, # (J, 3)
edges: List[Tuple[int, int]],
) -> Tuple[ndarray, ndarray]:
J = joints.shape[0]
dis_matrix = np.ones((J, J)) * 100.0
step_matrix = np.ones((J, J)) * 100.0
def dis(x: ndarray, y: ndarray):
return np.linalg.norm(x-y)
for i in range(J):
dis_matrix[i, i] = 0.
step_matrix[i, i] = 0.
for edge in edges:
dis_matrix[edge[0], edge[1]] = dis(joints[edge[0]], joints[edge[1]])
dis_matrix[edge[1], edge[0]] = dis(joints[edge[0]], joints[edge[1]])
step_matrix[edge[0], edge[1]] = 1
step_matrix[edge[1], edge[0]] = 1
# floyd
for k in range(J):
dis_matrix = np.minimum(dis_matrix, dis_matrix[:, k][:, np.newaxis] + dis_matrix[k, :][np.newaxis, :])
step_matrix = np.minimum(step_matrix, step_matrix[:, k][:, np.newaxis] + step_matrix[k, :][np.newaxis, :])
return dis_matrix, step_matrix
def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
children = defaultdict(list)
edges = []
for (id, p) in enumerate(asset.parents):
if p is not None:
edges.append((id, p))
children[p].append(id)
child = []
tails = asset.tails.copy()
for id in range(asset.J):
if len(children[id]) == 1:
child.append(children[id][0])
else:
child.append(id)
if self.deterministic:
tails[id] = asset.joints[id]
child = np.array(child)
dis_matrix, step_matrix = self._prepare(
joints=asset.joints,
edges=edges,
)
geo_dis, geo_mask = get_geodesic_distance(
vertices=asset.vertices,
joints=asset.joints,
tails=tails,
dis_matrix=dis_matrix,
step_matrix=step_matrix,
child=child,
soft_mask=self.soft_mask,
)
return {
'geodesic_distance': geo_dis,
'geodesic_mask': geo_mask,
}
class VertexGroupVoxelSkin(VertexGroup):
'''
Capture voxel skin.
'''
def __init__(self, **kwargs):
self.grid = kwargs.get('grid', 64)
self.alpha = kwargs.get('alpha', 0.5)
self.link_dis = kwargs.get('link_dis', 0.00001)
self.grid_query = kwargs.get('grid_query', 27)
self.vertex_query = kwargs.get('vertex_query', 27)
self.grid_weight = kwargs.get('grid_weight', 3.0)
self.mode = kwargs.get('mode', 'square')
def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
# normalize into [-1, 1] first
min_vals = np.min(asset.vertices, axis=0)
max_vals = np.max(asset.vertices, axis=0)
center = (min_vals + max_vals) / 2
scale = np.max(max_vals - min_vals) / 2
normalized_vertices = (asset.vertices - center) / scale
normalized_joints = (asset.joints - center) / scale
grid_indices, grid_coords = voxelization(
vertices=normalized_vertices,
faces=asset.faces,
grid=self.grid,
)
skin = voxel_skin(
grid=self.grid,
grid_coords=grid_coords,
joints=normalized_joints,
vertices=normalized_vertices,
faces=asset.faces,
alpha=self.alpha,
link_dis=self.link_dis,
grid_query=self.grid_query,
vertex_query=self.vertex_query,
grid_weight=self.grid_weight,
mode=self.mode,
)
skin = np.nan_to_num(skin, nan=0., posinf=0., neginf=0.)
return {
'voxel_skin': skin,
}
class VertexGroupMeshPartDistance(VertexGroup):
def __init__(self, **kwargs):
self.part_dim = kwargs['part_dim']
self.dis_dim = kwargs['dis_dim']
def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
tot, vertex_labels, face_labels = find_connected_components(asset.vertices, asset.faces)
# (N, dis_dim)
part_distances = compute_distances_in_components(asset.vertices, asset.faces, vertex_labels, tot, self.dis_dim)
# (tot, part_dim)
part_vectors = generate_spread_vectors(tot, self.part_dim)
# (N, part_dim)
part_vectors = np.zeros((asset.vertices.shape[0], self.part_dim))
for i in range(tot):
part_vectors[labels == i] = part_vectors[i]
return {
'num_parts': tot,
'part_vectors': part_vectors,
'part_distances': part_distances,
}
# TODO: move this into a new file
class VertexGroupMeshParts(VertexGroup):
def __init__(self, **kwargs):
pass
def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
tot, vertex_labels, face_labels = find_connected_components(asset.vertices, asset.faces)
asset.meta['num_parts'] = tot
asset.meta['vertex_labels'] = vertex_labels
asset.meta['face_labels'] = face_labels
return {}
def get_geodesic_distance(
vertices: ndarray, # (N, 3)
joints: ndarray, # (J, 3)
tails: ndarray, # (J, 3)
dis_matrix: ndarray, # (J, J)
step_matrix: ndarray, # (J, J)
child: ndarray,
eps: float=1e-4,
soft_mask: bool=False,
) -> Tuple[ndarray, ndarray]:
# (J, 3)
offset = tails - joints
inv = (1./(offset * offset + eps).sum(axis=-1))[np.newaxis, ...]
# head
g0 = tails[np.newaxis, ...] - vertices[:, np.newaxis, :]
c0 = (g0 * offset[np.newaxis, ...]).sum(axis=-1) * inv
# tail
g1 = vertices[:, np.newaxis, :] - joints[np.newaxis, ...]
c1 = (g1 * offset[np.newaxis, ...]).sum(axis=-1) * inv
# (N, J)
scale0 = (np.clip(c0, 0., 1.) + eps) / (np.clip(c0, 0., 1.) + np.clip(c1, 0., 1.) + eps * 2)
scale1 = -scale0 + 1
# (N, J, 3)
nearest = scale0[..., np.newaxis] * joints[np.newaxis, ...] + scale1[..., np.newaxis] * tails[np.newaxis, ...]
# (N, J)
dis = np.linalg.norm(vertices[:, np.newaxis, :] - nearest, axis=-1)
# (N)
index = np.argmin(dis, axis=1)
# (N)
r = np.arange(dis.shape[0])
# (N, J)
res = (
dis_matrix[index] * scale0[r[:, np.newaxis], index[:, np.newaxis]] +
dis_matrix[child[index]] * scale1[r[:, np.newaxis], index[:, np.newaxis]]
)
if soft_mask:
mask = (1.0 - (
step_matrix[index] * scale0[r[:, np.newaxis], index[:, np.newaxis]] +
step_matrix[child[index]] * scale1[r[:, np.newaxis], index[:, np.newaxis]]
)).clip(0., 1.).astype(np.float32)
else:
mask = ((
step_matrix[index] * scale0[r[:, np.newaxis], index[:, np.newaxis]] +
step_matrix[child[index]] * scale1[r[:, np.newaxis], index[:, np.newaxis]]
) <= 1.).astype(np.float32)
# normalize geo dis
row_min = np.min(res, axis=0, keepdims=True)
row_max = np.max(res, axis=0, keepdims=True)
res = (res - row_min) / (row_max - row_min)
res = np.nan_to_num(res, nan=0., posinf=0., neginf=0.)
return res, mask
def get_vertex_groups(config: VertexGroupConfig) -> List[VertexGroup]:
vertex_groups = []
MAP = {
'geodesic_distance': VertexGroupGeodesicDistance,
'skin': VertexGroupSkin,
'voxel_skin': VertexGroupVoxelSkin,
'mesh_part_distance': VertexGroupMeshPartDistance,
'mesh_parts': VertexGroupMeshParts,
}
for name in config.names:
assert name in MAP, f"expect: [{','.join(MAP.keys())}], found: {name}"
vertex_groups.append(MAP[name](**config.kwargs.get(name, {})))
return vertex_groups
def voxelization(
vertices: ndarray,
faces: ndarray,
grid: int=256,
scale: float=1.0,
):
import pyrender
znear = 0.05
zfar = 4.0
eye_dis = 2.0 # distance from eye to origin
r_faces = np.stack([faces[:, 0], faces[:, 2], faces[:, 1]], axis=-1)
# get zbuffers
mesh = pyrender.Mesh(
primitives=[
pyrender.Primitive(
positions=vertices,
indices=np.concatenate([faces, r_faces]), # double sided
mode=pyrender.GLTF.TRIANGLES,
)
]
)
scene = pyrender.Scene(bg_color=[0, 0, 0, 0])
scene.add(mesh)
camera = pyrender.OrthographicCamera(xmag=scale, ymag=scale, znear=znear, zfar=zfar)
camera_poses = {}
# coordinate:
# see https://pyrender.readthedocs.io/en/latest/examples/cameras.html
camera_poses['+z'] = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, eye_dis],
[0, 0, 0, 1],
], dtype=np.float32) # look at +z (bottom to top)
camera_poses['-z'] = np.array([
[-1, 0, 0, 0],
[ 0, 1, 0, 0],
[ 0, 0,-1, -eye_dis],
[ 0, 0, 0, 1],
], dtype=np.float32) # look at -z (top to bottom)
camera_poses['+y'] = np.array([
[1, 0, 0, 0],
[0, 0,-1, -eye_dis],
[0, 1, 0, 0],
[0, 0, 0, 1],
], dtype=np.float32) # look at +y (because model is looking at -y)(front to back)
camera_poses['-y'] = np.array([
[1, 0, 0, 0],
[0, 0, 1, eye_dis],
[0,-1, 0, 0],
[0, 0, 0, 1],
], dtype=np.float32) # look at -y (back to front)
camera_poses['+x'] = np.array([
[0, 0,-1, -eye_dis],
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1],
], dtype=np.float32) # look at +x (left to right)
camera_poses['-x'] = np.array([
[ 0, 0, 1, eye_dis],
[ 0, 1, 0, 0],
[-1, 0, 0, 0],
[ 0, 0, 0, 1],
], dtype=np.float32) # look at -x (righy to left)
for name, pose in camera_poses.items():
scene.add(camera, name=name, pose=pose)
camera_nodes = [node for node in scene.get_nodes() if isinstance(node, pyrender.Node) and node.camera is not None]
renderer = pyrender.OffscreenRenderer(viewport_width=grid, viewport_height=grid)
i, j, k = np.indices((grid, grid, grid))
grid_indices = np.stack((i.ravel(), j.ravel(), k.ravel()), axis=1, dtype=np.int64)
grid_coords = np.stack((i.ravel(), j.ravel(), grid-1-k.ravel()), axis=1, dtype=np.float32) * 2 / grid - 1.0 + 1.0 / grid # every position is in the middle of the grid
depths = {}
for cam_node in camera_nodes:
# a = time.time()
scene.main_camera_node = cam_node
name = cam_node.name
proj_depth = renderer.render(scene, flags=pyrender.constants.RenderFlags.DEPTH_ONLY | pyrender.constants.RenderFlags.OFFSCREEN)
proj_depth[proj_depth<znear] = zfar
proj_depth = znear + zfar - (znear * zfar) / proj_depth # back to origin
depths[name] = proj_depth
mask_z = -grid_coords[:, 2] + depths['+z'][grid-1-grid_indices[:, 1], grid_indices[:, 0]] <= eye_dis
mask_z &= grid_coords[:, 2] + depths['-z'][grid-1-grid_indices[:, 1], grid-1-grid_indices[:, 0]] <= eye_dis
mask_x = -grid_coords[:, 0] + depths['+x'][grid-1-grid_indices[:, 1], grid-1-grid_indices[:, 2]] <= eye_dis
mask_x &= grid_coords[:, 0] + depths['-x'][grid-1-grid_indices[:, 1], grid_indices[:, 2]] <= eye_dis
mask_y = -grid_coords[:, 1] + depths['+y'][grid_indices[:, 2], grid_indices[:, 0]] <= eye_dis
mask_y &= grid_coords[:, 1] + depths['-y'][grid-1-grid_indices[:, 2], grid_indices[:, 0]] <= eye_dis
mask = (mask_x & mask_y) | (mask_x & mask_z) | (mask_y & mask_z)
grid_indices = grid_indices[mask]
grid_coords = grid_coords[mask]
return grid_indices, grid_coords
def voxel_skin(
grid: int,
grid_coords: ndarray, # (M, 3)
joints: ndarray, # (J, 3)
vertices: ndarray, # (N, 3)
faces: ndarray, # (F, 3)
alpha: float=0.5,
link_dis: float=0.00001,
grid_query: int=27,
vertex_query: int=27,
grid_weight: float=3.0,
mode: str='square',
):
# https://dl.acm.org/doi/pdf/10.1145/2485895.2485919
assert mode in ['square', 'exp']
J = joints.shape[0]
M = grid_coords.shape[0]
N = vertices.shape[0]
grid_tree = cKDTree(grid_coords)
vertex_tree = cKDTree(vertices)
joint_tree = cKDTree(joints)
# make combined vertices
# 0 ~ N-1: mesh vertices
# N ~ N+M-1: grid vertices
combined_vertices = np.concatenate([vertices, grid_coords], axis=0)
# link adjacent grids
dist, idx = grid_tree.query(grid_coords, grid_query) # 3*3*3
dist = dist[:, 1:]
idx = idx[:, 1:]
mask = (0 < dist) & (dist < 2/grid*1.001)
source_grid2grid = np.repeat(np.arange(M), grid_query-1)[mask.ravel()] + N
to_grid2grid = idx[mask] + N
weight_grid2grid = dist[mask] * grid_weight
# link very close vertices
dist, idx = vertex_tree.query(vertices, 4)
dist = dist[:, 1:]
idx = idx[:, 1:]
mask = (0 < dist) & (dist < link_dis*1.001)
source_close = np.repeat(np.arange(N), 3)[mask.ravel()]
to_close = idx[mask]
weight_close = dist[mask]
# link grids to mesh vertices
dist, idx = vertex_tree.query(grid_coords, vertex_query)
mask = (0 < dist) & (dist < 2/grid*1.001) # sqrt(3)
source_grid2vertex = np.repeat(np.arange(M), vertex_query)[mask.ravel()] + N
to_grid2vertex = idx[mask]
weight_grid2vertex = dist[mask]
# build combined vertices tree
combined_tree = cKDTree(combined_vertices)
# link joints to the neartest vertices
_, joint_indices = combined_tree.query(joints)
# build graph
source_vertex2vertex = np.concatenate([faces[:, 0], faces[:, 1], faces[:, 2]], axis=0)
to_vertex2vertex = np.concatenate([faces[:, 1], faces[:, 2], faces[:, 0]], axis=0)
weight_vertex2vertex = np.sqrt(((vertices[source_vertex2vertex] - vertices[to_vertex2vertex])**2).sum(axis=-1))
graph = csr_matrix(
(np.concatenate([weight_close, weight_vertex2vertex, weight_grid2grid, weight_grid2vertex]),
(
np.concatenate([source_close, source_vertex2vertex, source_grid2grid, source_grid2vertex], axis=0),
np.concatenate([to_close, to_vertex2vertex, to_grid2grid, to_grid2vertex], axis=0)),
),
shape=(N+M, N+M),
)
# get shortest path (J, N+M)
dist_matrix = shortest_path(graph, method='D', directed=False, indices=joint_indices)
# (J, N)
dis_vertex2joint = dist_matrix[:, :N]
unreachable = np.isinf(dis_vertex2joint).all(axis=0)
k = min(J, 3)
dist, idx = joint_tree.query(vertices[unreachable], k)
# make sure at least one value in dis is not inf
unreachable_indices = np.where(unreachable)[0]
row_indices = idx
col_indices = np.repeat(unreachable_indices, k).reshape(-1, k)
dis_vertex2joint[row_indices, col_indices] = dist
finite_vals = dis_vertex2joint[np.isfinite(dis_vertex2joint)]
max_dis = np.max(finite_vals)
dis_vertex2joint = np.nan_to_num(dis_vertex2joint, nan=max_dis, posinf=max_dis, neginf=max_dis)
dis_vertex2joint = np.maximum(dis_vertex2joint, 1e-6)
# (J, N)
if mode == 'exp':
skin = np.exp(-dis_vertex2joint / max_dis * 20.0)
elif mode == 'square':
skin = (1./((1-alpha)*dis_vertex2joint + alpha*dis_vertex2joint**2))**2
else:
assert False, f'invalid mode: {mode}'
skin = skin / skin.sum(axis=0)
# (N, J)
skin = skin.transpose()
return skin
def find_connected_components(vertices: ndarray, faces: ndarray) -> Tuple[int, ndarray]:
'''
Find connected components of a mesh.
Returns:
int: number of connected components
ndarray: labels of connected components
'''
N = vertices.shape[0]
edges = []
for face in faces:
v0, v1, v2 = face
edges.append([v0, v1])
edges.append([v1, v2])
edges.append([v2, v0])
edges = np.array(edges)
row = edges[:, 0]
col = edges[:, 1]
data = np.ones(len(edges), dtype=int)
adj_matrix = csr_matrix((data, (row, col)), shape=(N, N))
adj_matrix = adj_matrix + adj_matrix.T
tot, vertex_labels = connected_components(adj_matrix, directed=False, return_labels=True)
face_labels = vertex_labels[faces[:, 0]]
return tot, vertex_labels, face_labels
def compute_distances_in_components(vertices: ndarray, faces: ndarray, vertex_labels: ndarray, tot: int, k: int) -> ndarray:
N = vertices.shape[0]
edges = []
weights = []
for face in faces:
v0, v1, v2 = face
w01 = np.linalg.norm(vertices[v0] - vertices[v1])
w12 = np.linalg.norm(vertices[v1] - vertices[v2])
w20 = np.linalg.norm(vertices[v2] - vertices[v0])
edges.extend([[v0, v1], [v1, v2], [v2, v0]])
weights.extend([w01, w12, w20])
edges = np.array(edges)
weights = np.array(weights)
row = edges[:, 0]
col = edges[:, 1]
adj_matrix = csr_matrix((weights, (row, col)), shape=(N, N))
adj_matrix = adj_matrix + adj_matrix.T
distance_matrix = np.full((N, k), np.inf) # (N, k)
for component_id in range(tot):
component_mask = (vertex_labels == component_id)
component_vertices_idx = np.where(component_mask)[0]
n_component = len(component_vertices_idx)
if n_component == 0:
continue
if n_component >= k:
sampled_indices = np.random.permutation(n_component)[:k]
else:
sampled_indices = np.concatenate([
np.random.permutation(n_component),
np.random.randint(0, n_component, k - n_component)
])
sampled_vertices = component_vertices_idx[sampled_indices]
dist_matrix = shortest_path(adj_matrix, indices=sampled_vertices, directed=False)
dist_matrix = dist_matrix[:, component_mask].T
# normalize into [0, 1]
max_value = dist_matrix.max()
min_value = dist_matrix.min()
if max_value < min_value + 1e-6:
dist_matrix[...] = 0.
else:
dist_matrix = (dist_matrix - min_value) / (max_value - min_value)
distance_matrix[component_mask, :] = dist_matrix
return distance_matrix
def generate_spread_vectors(tot: int, dim: int, iterations: int=100, lr: float=1.0) -> ndarray:
if tot <= 0:
return None
vectors = np.random.randn(tot, dim)
vectors = vectors / np.linalg.norm(vectors, axis=1, keepdims=True)
vectors = np.nan_to_num(vectors, nan=1.0, posinf=1.0, neginf=1.0)
for _ in range(iterations):
diff = vectors[np.newaxis, :, :] - vectors[:, np.newaxis, :]
norm_sq = np.sum(diff ** 2, axis=2)
weight = 1. / (norm_sq + 1.)
vectors += np.sum(diff * weight[:, :, np.newaxis] * lr, axis=1)
vectors = vectors / np.linalg.norm(vectors, axis=1, keepdims=True)
return vectors