Spaces:
Build error
Build error
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import torch | |
try: | |
import flash_attn_interface | |
FLASH_ATTN_3_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_3_AVAILABLE = False | |
try: | |
import flash_attn | |
FLASH_ATTN_2_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_2_AVAILABLE = False | |
import warnings | |
__all__ = [ | |
'flash_attention', | |
'attention', | |
] | |
import xformers.ops as xops | |
from xformers.ops import memory_efficient_attention, fmha | |
def flash_attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0., | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.float16, | |
version=None, | |
): | |
""" | |
q: [B, Lq, Nq, C1]. | |
k: [B, Lk, Nk, C1]. | |
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. | |
q_lens: [B]. | |
k_lens: [B]. | |
dropout_p: float. Dropout probability. | |
softmax_scale: float. The scaling of QK^T before applying softmax. | |
causal: bool. Whether to apply causal attention mask. | |
window_size: (left right). If not (-1, -1), apply sliding window local attention. | |
deterministic: bool. If True, slightly slower and uses more memory. | |
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. | |
""" | |
half_dtypes = (torch.float16, torch.bfloat16) | |
assert dtype in half_dtypes, f"dtype must be float16 or bfloat16, got {dtype}" | |
assert q.device.type == "cuda" and q.size(-1) <= 256 | |
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype | |
def half(x): | |
return x if x.dtype in half_dtypes else x.to(dtype) | |
# 预处理查询 | |
if q_lens is None: | |
q = half(q.flatten(0, 1)) # [B*Lq, Nq, C1] | |
q_lens = torch.full((b,), lq, dtype=torch.int32, device=q.device) | |
else: | |
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)], dim=0)) | |
# 预处理键和值 | |
if k_lens is None: | |
k = half(k.flatten(0, 1)) | |
v = half(v.flatten(0, 1)) | |
k_lens = torch.full((b,), lk, dtype=torch.int32, device=k.device) | |
else: | |
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)], dim=0)) | |
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)], dim=0)) | |
# 确保数据类型一致 | |
q = q.to(dtype) | |
k = k.to(dtype) | |
v = v.to(dtype) | |
if q_scale is not None: | |
q = q * q_scale | |
# 调整键和值的头数以匹配查询 | |
n_q_heads = q.size(1) | |
n_k_heads = k.size(1) | |
if n_k_heads != n_q_heads: | |
assert n_q_heads % n_k_heads == 0, "Nq must be divisible by Nk" | |
repeat_factor = n_q_heads // n_k_heads | |
k = k.repeat(1, repeat_factor, 1) | |
v = v.repeat(1, repeat_factor, 1) | |
# if window_size != (-1, -1): | |
# raise NotImplementedError("Sliding window attention not supported with xFormers") | |
window_size = (-1, -1) | |
# 生成块对角掩码 | |
q_lens_list = q_lens.cpu().tolist() | |
k_lens_list = k_lens.cpu().tolist() | |
if causal: | |
attn_bias = fmha.attn_bias.BlockDiagonalCausalMask.from_seqlens(q_seqlen=q_lens_list) | |
else: | |
attn_bias = fmha.attn_bias.BlockDiagonalMask.from_seqlens(q_seqlen=q_lens_list, kv_seqlen=k_lens_list) | |
# 添加虚拟批次维度以适应xFormers接口 | |
q = q.unsqueeze(0) # [1, sum_q, nh, hd] | |
k = k.unsqueeze(0) | |
v = v.unsqueeze(0) | |
# 调用xFormers的高效注意力实现 | |
x = xops.memory_efficient_attention( | |
q, k, v, | |
attn_bias=attn_bias, | |
p=dropout_p, | |
scale=softmax_scale, | |
# deterministic=deterministic # xFormers可能不支持此参数 | |
) | |
# 移除虚拟批次维度并恢复原始形状 | |
x = x.squeeze(0).unflatten(0, (b, lq)) # [B, Lq, Nq, C2] | |
return x.to(out_dtype) | |
def attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0., | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
fa_version=None, | |
): | |
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: | |
return flash_attention( | |
q=q, | |
k=k, | |
v=v, | |
q_lens=q_lens, | |
k_lens=k_lens, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
q_scale=q_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic, | |
dtype=dtype, | |
version=fa_version, | |
) | |
else: | |
if q_lens is not None or k_lens is not None: | |
warnings.warn( | |
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' | |
) | |
attn_mask = None | |
q = q.transpose(1, 2).to(dtype) | |
k = k.transpose(1, 2).to(dtype) | |
v = v.transpose(1, 2).to(dtype) | |
out = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) | |
out = out.transpose(1, 2).contiguous() | |
return out | |