|
import plotly.graph_objects as go |
|
import plotly.express as px |
|
import plotly.figure_factory as ff |
|
from plotly.subplots import make_subplots |
|
import networkx as nx |
|
import torch |
|
import numpy as np |
|
import pandas as pd |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
class GraphVisualizer: |
|
"""Advanced graph visualization utilities""" |
|
|
|
@staticmethod |
|
def create_graph_plot(data, max_nodes=500, layout_algorithm='spring', node_size_factor=1.0): |
|
"""Create interactive graph visualization""" |
|
try: |
|
if not hasattr(data, 'edge_index') or not hasattr(data, 'num_nodes'): |
|
raise ValueError("Data must have edge_index and num_nodes attributes") |
|
|
|
num_nodes = min(data.num_nodes, max_nodes) |
|
if num_nodes <= 0: |
|
raise ValueError("No nodes to visualize") |
|
|
|
|
|
G = nx.Graph() |
|
|
|
if data.edge_index.size(1) > 0: |
|
edge_list = data.edge_index.t().cpu().numpy() |
|
edge_list = edge_list[ |
|
(edge_list[:, 0] < num_nodes) & (edge_list[:, 1] < num_nodes) |
|
] |
|
|
|
if len(edge_list) > 0: |
|
G.add_edges_from(edge_list) |
|
|
|
G.add_nodes_from(range(num_nodes)) |
|
|
|
|
|
pos = nx.spring_layout(G, seed=42) |
|
|
|
|
|
if hasattr(data, 'y') and data.y is not None: |
|
node_colors = data.y.cpu().numpy()[:num_nodes] |
|
else: |
|
node_colors = [0] * num_nodes |
|
|
|
|
|
edge_x, edge_y = [], [] |
|
for edge in G.edges(): |
|
if edge[0] in pos and edge[1] in pos: |
|
x0, y0 = pos[edge[0]] |
|
x1, y1 = pos[edge[1]] |
|
edge_x.extend([x0, x1, None]) |
|
edge_y.extend([y0, y1, None]) |
|
|
|
|
|
node_x = [pos[node][0] for node in G.nodes()] |
|
node_y = [pos[node][1] for node in G.nodes()] |
|
|
|
fig = go.Figure() |
|
|
|
|
|
if edge_x: |
|
fig.add_trace(go.Scatter( |
|
x=edge_x, y=edge_y, |
|
line=dict(width=0.8, color='rgba(125,125,125,0.5)'), |
|
hoverinfo='none', |
|
mode='lines', |
|
showlegend=False |
|
)) |
|
|
|
|
|
fig.add_trace(go.Scatter( |
|
x=node_x, y=node_y, |
|
mode='markers', |
|
marker=dict( |
|
size=8, |
|
color=node_colors, |
|
colorscale='Viridis', |
|
line=dict(width=2, color='white'), |
|
opacity=0.8 |
|
), |
|
text=[f"Node {i}" for i in range(len(node_x))], |
|
hoverinfo='text', |
|
showlegend=False |
|
)) |
|
|
|
fig.update_layout( |
|
title=f'Graph Visualization ({num_nodes} nodes)', |
|
showlegend=False, |
|
hovermode='closest', |
|
margin=dict(b=20, l=5, r=5, t=40), |
|
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), |
|
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), |
|
plot_bgcolor='white', |
|
width=800, |
|
height=600 |
|
) |
|
|
|
return fig |
|
|
|
except Exception as e: |
|
logger.error(f"Graph visualization error: {e}") |
|
return GraphVisualizer._create_error_figure(f"Visualization error: {str(e)}") |
|
|
|
@staticmethod |
|
def create_metrics_plot(metrics): |
|
"""Create comprehensive metrics visualization""" |
|
try: |
|
metric_names = [] |
|
metric_values = [] |
|
|
|
for key, value in metrics.items(): |
|
if isinstance(value, (int, float)) and key not in ['error', 'loss']: |
|
if not (np.isnan(value) or np.isinf(value)) and 0 <= value <= 1: |
|
metric_names.append(key.replace('_', ' ').title()) |
|
metric_values.append(value) |
|
|
|
if not metric_names: |
|
return GraphVisualizer._create_error_figure("No valid metrics to display") |
|
|
|
fig = make_subplots( |
|
rows=1, cols=2, |
|
subplot_titles=('Performance Metrics', 'Metric Radar Chart'), |
|
specs=[[{"type": "bar"}, {"type": "polar"}]] |
|
) |
|
|
|
colors = px.colors.qualitative.Set3[:len(metric_names)] |
|
|
|
fig.add_trace( |
|
go.Bar( |
|
x=metric_names, |
|
y=metric_values, |
|
marker_color=colors, |
|
text=[f'{v:.3f}' for v in metric_values], |
|
textposition='auto', |
|
showlegend=False |
|
), |
|
row=1, col=1 |
|
) |
|
|
|
fig.add_trace( |
|
go.Scatterpolar( |
|
r=metric_values + [metric_values[0]], |
|
theta=metric_names + [metric_names[0]], |
|
fill='toself', |
|
line=dict(color='blue'), |
|
marker=dict(size=8), |
|
showlegend=False |
|
), |
|
row=1, col=2 |
|
) |
|
|
|
fig.update_layout( |
|
title='Model Performance Dashboard', |
|
height=400, |
|
showlegend=False |
|
) |
|
|
|
fig.update_xaxes(title_text="Metrics", tickangle=45, row=1, col=1) |
|
fig.update_yaxes(title_text="Score", range=[0, 1], row=1, col=1) |
|
|
|
fig.update_polars( |
|
radialaxis=dict(range=[0, 1], showticklabels=True), |
|
row=1, col=2 |
|
) |
|
|
|
return fig |
|
|
|
except Exception as e: |
|
logger.error(f"Metrics plot error: {e}") |
|
return GraphVisualizer._create_error_figure(f"Metrics plot error: {str(e)}") |
|
|
|
@staticmethod |
|
def create_training_history_plot(history): |
|
"""Create comprehensive training history visualization""" |
|
try: |
|
if not isinstance(history, dict) or not history: |
|
return GraphVisualizer._create_error_figure("No training history available") |
|
|
|
required_keys = ['train_loss', 'train_acc'] |
|
for key in required_keys: |
|
if key not in history or not history[key]: |
|
return GraphVisualizer._create_error_figure(f"Missing {key} in training history") |
|
|
|
epochs = list(range(len(history['train_loss']))) |
|
|
|
fig = make_subplots( |
|
rows=2, cols=2, |
|
subplot_titles=('Loss Over Time', 'Accuracy Over Time', 'Learning Rate', 'Training Progress'), |
|
specs=[[{"secondary_y": False}, {"secondary_y": False}], |
|
[{"secondary_y": False}, {"secondary_y": False}]] |
|
) |
|
|
|
|
|
fig.add_trace( |
|
go.Scatter( |
|
x=epochs, y=history['train_loss'], |
|
mode='lines', name='Train Loss', |
|
line=dict(color='blue', width=2), |
|
showlegend=False |
|
), |
|
row=1, col=1 |
|
) |
|
|
|
if 'val_loss' in history and history['val_loss']: |
|
fig.add_trace( |
|
go.Scatter( |
|
x=epochs, y=history['val_loss'], |
|
mode='lines', name='Val Loss', |
|
line=dict(color='red', width=2), |
|
showlegend=False |
|
), |
|
row=1, col=1 |
|
) |
|
|
|
|
|
fig.add_trace( |
|
go.Scatter( |
|
x=epochs, y=history['train_acc'], |
|
mode='lines', name='Train Acc', |
|
line=dict(color='green', width=2), |
|
showlegend=False |
|
), |
|
row=1, col=2 |
|
) |
|
|
|
if 'val_acc' in history and history['val_acc']: |
|
fig.add_trace( |
|
go.Scatter( |
|
x=epochs, y=history['val_acc'], |
|
mode='lines', name='Val Acc', |
|
line=dict(color='orange', width=2), |
|
showlegend=False |
|
), |
|
row=1, col=2 |
|
) |
|
|
|
|
|
if 'lr' in history and history['lr']: |
|
fig.add_trace( |
|
go.Scatter( |
|
x=epochs, y=history['lr'], |
|
mode='lines', name='Learning Rate', |
|
line=dict(color='purple', width=2), |
|
showlegend=False |
|
), |
|
row=2, col=1 |
|
) |
|
|
|
|
|
final_metrics = { |
|
'Final Train Acc': history['train_acc'][-1] if history['train_acc'] else 0, |
|
'Final Train Loss': history['train_loss'][-1] if history['train_loss'] else 0, |
|
} |
|
|
|
if 'val_acc' in history and history['val_acc']: |
|
final_metrics['Final Val Acc'] = history['val_acc'][-1] |
|
final_metrics['Best Val Acc'] = max(history['val_acc']) |
|
|
|
metric_names = list(final_metrics.keys()) |
|
metric_values = list(final_metrics.values()) |
|
|
|
fig.add_trace( |
|
go.Bar( |
|
x=metric_names, |
|
y=metric_values, |
|
marker_color=['lightblue', 'lightcoral', 'lightgreen', 'gold'], |
|
text=[f'{v:.3f}' for v in metric_values], |
|
textposition='auto', |
|
showlegend=False |
|
), |
|
row=2, col=2 |
|
) |
|
|
|
fig.update_layout( |
|
title='Training History Dashboard', |
|
height=600, |
|
showlegend=True |
|
) |
|
|
|
fig.update_xaxes(title_text="Epoch", row=1, col=1) |
|
fig.update_xaxes(title_text="Epoch", row=1, col=2) |
|
fig.update_xaxes(title_text="Epoch", row=2, col=1) |
|
fig.update_xaxes(title_text="Metric", tickangle=45, row=2, col=2) |
|
|
|
fig.update_yaxes(title_text="Loss", row=1, col=1) |
|
fig.update_yaxes(title_text="Accuracy", range=[0, 1], row=1, col=2) |
|
fig.update_yaxes(title_text="Learning Rate", type="log", row=2, col=1) |
|
fig.update_yaxes(title_text="Value", row=2, col=2) |
|
|
|
return fig |
|
|
|
except Exception as e: |
|
logger.error(f"Training history plot error: {e}") |
|
return GraphVisualizer._create_error_figure(f"Training history plot error: {str(e)}") |
|
|
|
@staticmethod |
|
def _create_error_figure(error_message): |
|
"""Create an error figure with message""" |
|
fig = go.Figure() |
|
fig.add_annotation( |
|
text=error_message, |
|
x=0.5, y=0.5, |
|
xref="paper", yref="paper", |
|
showarrow=False, |
|
font=dict(size=14, color="red"), |
|
bgcolor="rgba(255,255,255,0.8)", |
|
bordercolor="red", |
|
borderwidth=1 |
|
) |
|
fig.update_layout( |
|
title="Visualization Error", |
|
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), |
|
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), |
|
plot_bgcolor='white', |
|
width=600, |
|
height=400 |
|
) |
|
return fig |