Spaces:
Sleeping
Sleeping
File size: 7,533 Bytes
a5c1730 b058bd9 a5c1730 bc676ba b058bd9 bc676ba b058bd9 bc676ba b058bd9 a5c1730 b058bd9 bc676ba b058bd9 bc676ba b058bd9 773be33 b058bd9 773be33 b058bd9 d3cc8a6 bc676ba b058bd9 ae2daab b058bd9 bc676ba b058bd9 bc676ba b058bd9 bc676ba 208b3c3 9b4a539 bc676ba b058bd9 bc676ba 9b4a539 b058bd9 80193e3 d3cc8a6 80193e3 d3cc8a6 80193e3 bc676ba b058bd9 bc676ba b058bd9 93c5295 b058bd9 bc676ba b058bd9 bc676ba b058bd9 bc676ba b058bd9 bc676ba b058bd9 bc676ba b058bd9 bc676ba b058bd9 bc676ba 29f410d bc676ba b058bd9 bc676ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import torch
import asyncio
import logging
import signal
import uvicorn
import os
from fastapi import FastAPI, Request, HTTPException, status
from pydantic import BaseModel, Field
from langdetect import detect
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, GenerationConfig
from langchain.vectorstores import Qdrant
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
from qdrant_client import QdrantClient
from langchain.callbacks.base import BaseCallbackHandler
from huggingface_hub import hf_hub_download
from contextlib import asynccontextmanager
# Get environment variables
COLLECTION_NAME = "arabic_rag_collection"
QDRANT_URL = os.getenv("QDRANT_URL", "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4")
# === LOGGING === #
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load model and tokenizer
model_name = "FreedomIntelligence/Apollo-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# FastAPI setup
app = FastAPI(title="Apollo RAG Medical Chatbot")
# Generation settings
generation_config = GenerationConfig(
max_new_tokens=150,
temperature=0.2,
top_k=20,
do_sample=True,
top_p=0.7,
repetition_penalty=1.3,
)
# Text generation pipeline
llm_pipeline = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
generation_config=generation_config,
device=model.device.index if model.device.type == "cuda" else -1
)
llm = HuggingFacePipeline(pipeline=llm_pipeline)
# Connect to Qdrant + embedding
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
vector_store = Qdrant(
client=qdrant_client,
collection_name=COLLECTION_NAME,
embeddings=embedding
)
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
# Set up RAG QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff"
)
class Query(BaseModel):
question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)
class TimeoutCallback(BaseCallbackHandler):
def __init__(self, timeout_seconds: int = 60):
self.timeout_seconds = timeout_seconds
self.start_time = None
async def on_llm_start(self, *args, **kwargs):
self.start_time = asyncio.get_event_loop().time()
async def on_llm_new_token(self, *args, **kwargs):
if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
raise TimeoutError("LLM processing timeout")
# def generate_prompt(question: str) -> str:
# lang = detect(question)
# if lang == "ar":
# return (
# "أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. \n"
# "- عدم تكرار أي نقطة أو عبارة أو كلمة\n"
# "- وضوح وسلاسة كل نقطة\n"
# "- تجنب الحشو والعبارات الزائدة\n"
# f"\nالسؤال: {question}\nالإجابة:"
# )
# else:
# return (
# "Answer the following medical question in clear English with a detailed, non-redundant response. "
# "Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant "
# "information, rely on your prior medical knowledge. If the answer involves multiple points, list them "
# "in concise and distinct bullet points:\n"
# f"Question: {question}\nAnswer:"
# )
def generate_prompt(question):
lang = detect(question)
if lang == "ar":
return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
وتأكد من ان:
- عدم تكرار أي نقطة أو عبارة أو كلمة
- وضوح وسلاسة كل نقطة
- تجنب الحشو والعبارات الزائدة-
السؤال: {question}
الإجابة:
"""
else:
return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant information, rely on your prior medical knowledge. If the answer involves multiple points, list them in concise and distinct bullet points:
Question: {question}
Answer:"""
# === ROUTES === #
@app.get("/")
async def root():
return {"message": "Medical QA API is running!"}
@app.post("/ask")
async def ask(query: Query):
try:
logger.debug(f"Received question: {query.question}")
prompt = generate_prompt(query.question)
timeout_callback = TimeoutCallback(timeout_seconds=60)
# docs = retriever.get_relevant_documents(query.question)
# if not docs:
# logger.warning("No documents retrieved from Qdrant for the question.")
# else:
# logger.debug(f"Retrieved documents: {[doc.page_content for doc in docs[:1]]}")
loop = asyncio.get_event_loop()
answer = await asyncio.wait_for(
# qa_chain.run(prompt, callbacks=[timeout_callback]),
loop.run_in_executor(None, qa_chain.run, prompt),
timeout=360
)
if not answer:
raise ValueError("Empty answer returned from model")
if 'Answer:' in answer:
response_text = answer.split('Answer:')[-1].strip()
elif 'الإجابة:' in answer:
response_text = answer.split('الإجابة:')[-1].strip()
else:
response_text = answer.strip()
return {
"status": "success",
"answer": answer,
"response": response_text,
"language": detect(query.question)
}
except TimeoutError as te:
logger.error("Request timed out", exc_info=True)
raise HTTPException(
status_code=status.HTTP_504_GATEWAY_TIMEOUT,
detail={"status": "error", "message": "Request timed out", "error": str(te)}
)
except Exception as e:
logger.error(f"Unexpected error: {e}", exc_info=True)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"status": "error", "message": "Internal server error", "error": str(e)}
)
@app.post("/chat")
def chat(query: Query):
prompt = generate_prompt(query.question)
answer = qa_chain.run(prompt)
return {
"answer": answer
}
# === ENTRYPOINT === #
if __name__ == "__main__":
def handle_exit(signum, frame):
print("Shutting down gracefully...")
exit(0)
signal.signal(signal.SIGINT, handle_exit)
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|