File size: 7,533 Bytes
a5c1730
 
 
 
 
b058bd9
a5c1730
 
 
bc676ba
 
 
b058bd9
bc676ba
b058bd9
 
bc676ba
b058bd9
a5c1730
b058bd9
bc676ba
b058bd9
bc676ba
b058bd9
 
773be33
 
b058bd9
773be33
 
b058bd9
d3cc8a6
bc676ba
 
 
 
b058bd9
ae2daab
 
 
 
b058bd9
bc676ba
 
 
 
 
 
 
 
 
b058bd9
bc676ba
 
 
 
 
 
 
 
b058bd9
bc676ba
208b3c3
 
 
 
 
 
 
 
 
 
9b4a539
bc676ba
b058bd9
 
 
 
 
 
bc676ba
9b4a539
 
 
b058bd9
 
 
 
 
 
 
 
 
 
 
 
 
80193e3
d3cc8a6
 
80193e3
 
 
 
 
 
 
d3cc8a6
80193e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc676ba
 
 
 
 
 
 
 
 
b058bd9
 
 
 
 
 
 
 
 
bc676ba
b058bd9
 
 
 
93c5295
b058bd9
 
 
 
 
 
 
 
 
 
bc676ba
b058bd9
bc676ba
b058bd9
bc676ba
 
b058bd9
bc676ba
 
 
 
b058bd9
 
bc676ba
 
b058bd9
bc676ba
 
 
 
 
 
b058bd9
bc676ba
 
29f410d
 
 
 
 
 
 
 
 
 
 
 
 
 
bc676ba
 
 
 
 
 
 
b058bd9
bc676ba
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import asyncio
import logging
import signal
import uvicorn
import os 

from fastapi import FastAPI, Request, HTTPException, status
from pydantic import BaseModel, Field
from langdetect import detect

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, GenerationConfig
from langchain.vectorstores import Qdrant
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
from qdrant_client import QdrantClient
from langchain.callbacks.base import BaseCallbackHandler
from huggingface_hub import hf_hub_download
from contextlib import asynccontextmanager

# Get environment variables
COLLECTION_NAME = "arabic_rag_collection"
QDRANT_URL = os.getenv("QDRANT_URL", "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4")

# === LOGGING === #
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Load model and tokenizer
model_name = "FreedomIntelligence/Apollo-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token


# FastAPI setup
app = FastAPI(title="Apollo RAG Medical Chatbot")


# Generation settings
generation_config = GenerationConfig(
    max_new_tokens=150,
    temperature=0.2,
    top_k=20,
    do_sample=True,
    top_p=0.7,
    repetition_penalty=1.3,
)

# Text generation pipeline
llm_pipeline = pipeline(
    model=model,
    tokenizer=tokenizer,
    task="text-generation",
    generation_config=generation_config,
    device=model.device.index if model.device.type == "cuda" else -1
)

llm = HuggingFacePipeline(pipeline=llm_pipeline)

# Connect to Qdrant + embedding
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)

vector_store = Qdrant(
    client=qdrant_client,
    collection_name=COLLECTION_NAME,
    embeddings=embedding
)

retriever = vector_store.as_retriever(search_kwargs={"k": 3})

# Set up RAG QA chain
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    chain_type="stuff"
)

class Query(BaseModel):
    question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)

class TimeoutCallback(BaseCallbackHandler):
    def __init__(self, timeout_seconds: int = 60):
        self.timeout_seconds = timeout_seconds
        self.start_time = None

    async def on_llm_start(self, *args, **kwargs):
        self.start_time = asyncio.get_event_loop().time()

    async def on_llm_new_token(self, *args, **kwargs):
        if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
            raise TimeoutError("LLM processing timeout")


# def generate_prompt(question: str) -> str:
#     lang = detect(question)
#     if lang == "ar":
#         return (
#             "أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. \n"
#             "- عدم تكرار أي نقطة أو عبارة أو كلمة\n"
#             "- وضوح وسلاسة كل نقطة\n"
#             "- تجنب الحشو والعبارات الزائدة\n"
#             f"\nالسؤال: {question}\nالإجابة:"
#         )
#     else:
#         return (
#             "Answer the following medical question in clear English with a detailed, non-redundant response. "
#             "Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant "
#             "information, rely on your prior medical knowledge. If the answer involves multiple points, list them "
#             "in concise and distinct bullet points:\n"
#             f"Question: {question}\nAnswer:"
#         )

def generate_prompt(question):
    lang = detect(question)
    if lang == "ar":
        return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. 
 وتأكد من ان:
- عدم تكرار أي نقطة أو عبارة أو كلمة
- وضوح وسلاسة كل نقطة
- تجنب الحشو والعبارات الزائدة-

السؤال: {question}
الإجابة:
"""
        
    else:
        return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant information, rely on your prior medical knowledge. If the answer involves multiple points, list them in concise and distinct bullet points:
Question: {question}
Answer:"""

# === ROUTES === #
@app.get("/")
async def root():
    return {"message": "Medical QA API is running!"}

@app.post("/ask")
async def ask(query: Query):
    try:
        logger.debug(f"Received question: {query.question}")
        prompt = generate_prompt(query.question)
        timeout_callback = TimeoutCallback(timeout_seconds=60)

        # docs = retriever.get_relevant_documents(query.question)
        # if not docs:
        #     logger.warning("No documents retrieved from Qdrant for the question.")
        # else:
        #     logger.debug(f"Retrieved documents: {[doc.page_content for doc in docs[:1]]}")

        loop = asyncio.get_event_loop()
        
        answer = await asyncio.wait_for(
            # qa_chain.run(prompt, callbacks=[timeout_callback]),
            loop.run_in_executor(None, qa_chain.run, prompt),
            timeout=360
        )

        if not answer:
            raise ValueError("Empty answer returned from model")

        if 'Answer:' in answer:
            response_text = answer.split('Answer:')[-1].strip()
        elif 'الإجابة:' in answer:
            response_text = answer.split('الإجابة:')[-1].strip()
        else:
            response_text = answer.strip()

        
        return {
            "status": "success",
            "answer": answer,
            "response": response_text,
            "language": detect(query.question)
        }

    except TimeoutError as te:
        logger.error("Request timed out", exc_info=True)
        raise HTTPException(
            status_code=status.HTTP_504_GATEWAY_TIMEOUT,
            detail={"status": "error", "message": "Request timed out", "error": str(te)}
        )

    except Exception as e:
        logger.error(f"Unexpected error: {e}", exc_info=True)
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail={"status": "error", "message": "Internal server error", "error": str(e)}
        )

@app.post("/chat")
def chat(query: Query):

    prompt = generate_prompt(query.question)

    answer = qa_chain.run(prompt)

    return {

        "answer": answer
    }

    

# === ENTRYPOINT === #
if __name__ == "__main__":
    def handle_exit(signum, frame):
        print("Shutting down gracefully...")
        exit(0)

    signal.signal(signal.SIGINT, handle_exit)
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)