Spaces:
Running
Running
from __future__ import annotations | |
import logging | |
import os | |
import time | |
from datetime import datetime | |
from typing import Dict, List, Union | |
from fastapi import APIRouter, BackgroundTasks, HTTPException, Header, Request | |
from pydantic import BaseModel, Field | |
from .analytics import Analytics | |
from .service import ( | |
ModelConfig, | |
TextModelType, | |
EmbeddingsService, | |
ModelKind, | |
detect_model_kind, | |
) | |
logger = logging.getLogger(__name__) | |
router = APIRouter( | |
tags=["v1"], | |
responses={404: {"description": "Not found"}}, | |
) | |
class EmbeddingRequest(BaseModel): | |
""" | |
Request model for generating embeddings. | |
""" | |
model: str = Field( | |
default=TextModelType.MULTILINGUAL_E5_SMALL.value, | |
description=( | |
"Which model ID to use? " | |
"Text options: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', " | |
"'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', " | |
"'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. " | |
"Image option: ['siglip-base-patch16-256-multilingual']." | |
), | |
) | |
input: Union[str, List[str]] = Field( | |
..., description="Text(s) or image URL(s)/path(s)." | |
) | |
class RankRequest(BaseModel): | |
""" | |
Request model for ranking candidates. | |
""" | |
model: str = Field( | |
default=TextModelType.MULTILINGUAL_E5_SMALL.value, | |
description=( | |
"Model ID for the queries. " | |
"Can be a text or image model (e.g. 'siglip-base-patch16-256-multilingual' for images)." | |
), | |
) | |
queries: Union[str, List[str]] = Field( | |
..., description="Query text(s) or image(s) depending on the model type." | |
) | |
candidates: List[str] = Field(..., description="Candidate texts to rank.") | |
class EmbeddingResponse(BaseModel): | |
""" | |
Response model for embeddings. | |
""" | |
object: str | |
data: List[dict] | |
model: str | |
usage: dict | |
class RankResponse(BaseModel): | |
""" | |
Response model for ranking results. | |
""" | |
probabilities: List[List[float]] | |
cosine_similarities: List[List[float]] | |
class StatsBucket(BaseModel): | |
""" | |
Model for daily/weekly/monthly/yearly stats. | |
""" | |
total: Dict[str, int] | |
daily: Dict[str, int] | |
weekly: Dict[str, int] | |
monthly: Dict[str, int] | |
yearly: Dict[str, int] | |
class StatsResponse(BaseModel): | |
""" | |
Analytics stats response model, including both access and token counts. | |
""" | |
access: StatsBucket | |
tokens: StatsBucket | |
# Initialize the embeddings service and analytics. | |
service_config = ModelConfig() | |
embeddings_service = EmbeddingsService(config=service_config) | |
analytics = Analytics( | |
url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"), | |
token=os.environ.get("REDIS_TOKEN", "***"), | |
sync_interval=30 * 60, # 30 minutes | |
) | |
# Rate limiting cache: {ip: [timestamp1, timestamp2, ...]} | |
rate_limit_cache: Dict[str, List[float]] = {} | |
def check_rate_limit( | |
client_ip: str, max_requests: int = 4, window_seconds: int = 60 | |
) -> bool: | |
""" | |
Check if the client IP has exceeded the rate limit. | |
Returns True if request is allowed, False if rate limited. | |
""" | |
current_time = time.time() | |
# Clean up old entries and get current requests | |
if client_ip in rate_limit_cache: | |
# Remove requests older than the window | |
rate_limit_cache[client_ip] = [ | |
timestamp | |
for timestamp in rate_limit_cache[client_ip] | |
if current_time - timestamp < window_seconds | |
] | |
else: | |
rate_limit_cache[client_ip] = [] | |
# Check if under limit | |
if len(rate_limit_cache[client_ip]) < max_requests: | |
# Add current request timestamp | |
rate_limit_cache[client_ip].append(current_time) | |
return True | |
return False | |
async def create_embeddings( | |
request: EmbeddingRequest, | |
background_tasks: BackgroundTasks, | |
fastapi_request: Request, | |
authorization: str = Header(None), | |
): | |
""" | |
Generate embeddings for the given text or image inputs. | |
""" | |
# Check authorization | |
expected_token = os.environ.get("ACCESS_TOKEN") | |
is_authenticated = False | |
if expected_token: | |
if authorization: | |
# Support both "Bearer <token>" and plain token formats | |
token = authorization | |
if authorization.startswith("Bearer "): | |
token = authorization[7:] # Remove "Bearer " prefix | |
if token == expected_token: | |
is_authenticated = True | |
# If not authenticated, check rate limit | |
if not is_authenticated: | |
# Get client IP | |
client_ip = fastapi_request.client.host | |
if hasattr(fastapi_request.headers, "get"): | |
# Check for forwarded IP (in case of proxy) | |
forwarded_for = fastapi_request.headers.get("X-Forwarded-For") | |
if forwarded_for: | |
client_ip = forwarded_for.split(",")[0].strip() | |
real_ip = fastapi_request.headers.get("X-Real-IP") | |
if real_ip: | |
client_ip = real_ip.strip() | |
# Check rate limit (4 requests per minute) | |
if not check_rate_limit(client_ip): | |
raise HTTPException( | |
status_code=429, | |
detail="Rate limit exceeded. Maximum 4 requests per minute for unauthenticated users.", | |
) | |
# If no authorization header was provided when ACCESS_TOKEN is set | |
if not authorization: | |
raise HTTPException( | |
status_code=401, detail="Authorization header required" | |
) | |
else: | |
raise HTTPException( | |
status_code=401, detail="Invalid authorization token" | |
) | |
try: | |
modality = detect_model_kind(request.model) | |
embeddings = await embeddings_service.generate_embeddings( | |
model=request.model, | |
inputs=request.input, | |
) | |
# Estimate tokens if using a text model. | |
total_tokens = 0 | |
if modality == ModelKind.TEXT: | |
total_tokens = embeddings_service.estimate_tokens(request.input) | |
resp = { | |
"object": "list", | |
"data": [], | |
"model": request.model, | |
"usage": { | |
"prompt_tokens": total_tokens, | |
"total_tokens": total_tokens, | |
}, | |
} | |
for idx, emb in enumerate(embeddings): | |
resp["data"].append( | |
{ | |
"object": "embedding", | |
"index": idx, | |
"embedding": emb.tolist(), | |
} | |
) | |
# Record analytics in the background. | |
background_tasks.add_task( | |
analytics.access, request.model, resp["usage"]["total_tokens"] | |
) | |
return resp | |
except Exception as e: | |
msg = ( | |
"Failed to generate embeddings. Check model ID, inputs, etc.\n" | |
f"Details: {str(e)}" | |
) | |
logger.error(msg) | |
raise HTTPException(status_code=500, detail=msg) | |
async def rank_candidates(request: RankRequest, background_tasks: BackgroundTasks): | |
""" | |
Rank candidate texts against the given queries. | |
""" | |
try: | |
results = await embeddings_service.rank( | |
model=request.model, | |
queries=request.queries, | |
candidates=request.candidates, | |
) | |
# Record analytics in the background. | |
background_tasks.add_task( | |
analytics.access, request.model, results["usage"]["total_tokens"] | |
) | |
return results | |
except Exception as e: | |
msg = ( | |
"Failed to rank candidates. Check model ID, inputs, etc.\n" | |
f"Details: {str(e)}" | |
) | |
logger.error(msg) | |
raise HTTPException(status_code=500, detail=msg) | |
async def get_stats(): | |
""" | |
Retrieve usage statistics for all models, including access counts and token usage. | |
""" | |
try: | |
day_key = datetime.utcnow().strftime("%Y-%m-%d") | |
week_key = f"{datetime.utcnow().year}-W{datetime.utcnow().strftime('%U')}" | |
month_key = datetime.utcnow().strftime("%Y-%m") | |
year_key = datetime.utcnow().strftime("%Y") | |
stats_data = ( | |
await analytics.stats() | |
) # Expected to return a dict with 'access' and 'tokens' keys | |
return { | |
"access": { | |
"total": stats_data["access"].get("total", {}), | |
"daily": stats_data["access"].get(day_key, {}), | |
"weekly": stats_data["access"].get(week_key, {}), | |
"monthly": stats_data["access"].get(month_key, {}), | |
"yearly": stats_data["access"].get(year_key, {}), | |
}, | |
"tokens": { | |
"total": stats_data["tokens"].get("total", {}), | |
"daily": stats_data["tokens"].get(day_key, {}), | |
"weekly": stats_data["tokens"].get(week_key, {}), | |
"monthly": stats_data["tokens"].get(month_key, {}), | |
"yearly": stats_data["tokens"].get(year_key, {}), | |
}, | |
} | |
except Exception as e: | |
msg = f"Failed to fetch analytics stats: {str(e)}" | |
logger.error(msg) | |
raise HTTPException(status_code=500, detail=msg) | |