game_reasoning_arena / ui /gradio_config_generator.py
lcipolina's picture
Fixed the display of actions to appear as strings
a275f83 verified
#!/usr/bin/env python3
"""
Gradio Configuration Generator
This module creates configurations compatible with the existing runner.py and
simulate.py infrastructure, eliminating code duplication in the Gradio app.
"""
import tempfile
import yaml
from typing import Dict, Any, Tuple
import logging
logger = logging.getLogger(__name__)
def create_config_for_gradio_game(
game_name: str,
player1_type: str,
player2_type: str,
player1_model: str = None,
player2_model: str = None,
rounds: int = 1,
seed: int = 42,
use_ray: bool = False
) -> Dict[str, Any]:
"""
Create a configuration dictionary compatible with the existing
runner.py and simulate.py infrastructure.
Args:
game_name: Name of the game to play
player1_type: Type of player 1 (human, random, llm)
player2_type: Type of player 2 (human, random, llm)
player1_model: LLM model for player 1 (if applicable)
player2_model: LLM model for player 2 (if applicable)
rounds: Number of episodes to play
seed: Random seed for reproducibility
use_ray: Whether to use Ray for parallel processing
Returns:
Configuration dictionary compatible with runner.py
"""
# Base configuration structure (matches default_simulation_config)
config = {
"env_config": {
"game_name": game_name,
"max_game_rounds": None,
},
"num_episodes": rounds,
"seed": seed,
"use_ray": use_ray,
"mode": f"{player1_type}_vs_{player2_type}",
"agents": {},
"llm_backend": {
"max_tokens": 250,
"temperature": 0.1,
"default_model": "litellm_groq/gemma-7b-it",
},
"log_level": "INFO",
}
# Configure player agents
config["agents"]["player_0"] = _create_agent_config(
player1_type, player1_model)
config["agents"]["player_1"] = _create_agent_config(
player2_type, player2_model)
# Debug: Print the agent configurations
print("📋 CONFIG DEBUG: Agent configurations created:")
print(f" Player 0 config: {config['agents']['player_0']}")
print(f" Player 1 config: {config['agents']['player_1']}")
# Update backend default model if LLM is used
# Check player 1 first
if (player1_type == "llm" and player1_model) or player1_type.startswith("llm_"):
if player1_model:
config["llm_backend"]["default_model"] = player1_model
elif player1_type.startswith("llm_"):
# Extract model from player type (e.g., "llm_gpt2" -> "gpt2")
config["llm_backend"]["default_model"] = player1_type[4:]
# Check player 2 if player 1 doesn't have LLM
elif (player2_type == "llm" and player2_model) or player2_type.startswith("llm_"):
if player2_model:
config["llm_backend"]["default_model"] = player2_model
elif player2_type.startswith("llm_"):
# Extract model from player type (e.g., "llm_gpt2" -> "gpt2")
config["llm_backend"]["default_model"] = player2_type[4:]
return config
def _create_agent_config(player_type: str,
model: str = None) -> Dict[str, Any]:
"""
Create agent configuration based on player type and model.
Handles both Gradio-specific formats (e.g., "hf_gpt2", "random_bot")
and standard formats (e.g., "llm", "random").
Args:
player_type: Type of player (human, random, random_bot, hf_*, etc.)
model: Model name for LLM agents
Returns:
Agent configuration dictionary
"""
print("🔧 AGENT CONFIG DEBUG: Creating agent config for:")
print(f" player_type: {player_type}")
print(f" model: {model}")
# Handle Gradio-specific formats
if player_type == "random_bot":
config = {"type": "random"}
elif player_type.startswith("hf_"):
# Extract model from player type (e.g., "hf_gpt2" -> "gpt2")
model_from_type = player_type[3:] # Remove "hf_" prefix
# Use the hf_prefixed model name for LLM registry lookup
model_name = f"hf_{model_from_type}"
config = {
"type": "llm", # Use standard LLM agent type
"model": model_name # This will be looked up in LLM_REGISTRY
}
elif player_type.startswith("llm_"):
# For backwards compatibility with LiteLLM models
model_from_type = player_type[4:] # Remove "llm_" prefix
# Map display model names to actual model names with prefixes
model_name = model or model_from_type
if not model_name.startswith(("litellm_", "vllm_")):
# Add litellm_ prefix for LiteLLM models
model_name = f"litellm_{model_name}"
config = {
"type": "llm",
"model": model_name
}
elif player_type == "llm":
model_name = model or "litellm_groq/gemma-7b-it"
if not model_name.startswith(("litellm_", "vllm_")):
model_name = f"litellm_{model_name}"
config = {
"type": "llm",
"model": model_name
}
elif player_type == "random":
config = {"type": "random"}
elif player_type == "human":
config = {"type": "human"} # This might need additional handling
else:
# Default to random for unknown types
config = {"type": "random"}
print(f" → Created config: {config}")
return config
def create_temporary_config_file(config: Dict[str, Any]) -> str:
"""
Create a temporary YAML config file that can be used with runner.py.
Args:
config: Configuration dictionary
Returns:
Path to the temporary config file
"""
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(
mode='w',
suffix='.yaml',
delete=False
)
try:
yaml.dump(config, temp_file, default_flow_style=False)
temp_file.flush()
return temp_file.name
finally:
temp_file.close()
def run_game_with_existing_infrastructure(
game_name: str,
player1_type: str,
player2_type: str,
player1_model: str = None,
player2_model: str = None,
rounds: int = 1,
seed: int = 42
) -> str:
"""
Run a game using the existing runner.py and simulate.py infrastructure,
but capture detailed game logs for Gradio display.
This function reuses the existing simulation infrastructure while providing
detailed game output for the Gradio interface.
Args:
game_name: Name of the game to play
player1_type: Type of player 1
player2_type: Type of player 2
player1_model: LLM model for player 1 (if applicable)
player2_model: LLM model for player 2 (if applicable)
rounds: Number of episodes to play
seed: Random seed
Returns:
Detailed game simulation results as a string
"""
try:
# Import the existing infrastructure
from src.game_reasoning_arena.arena.utils.seeding import set_seed
from src.game_reasoning_arena.backends import initialize_llm_registry
from src.game_reasoning_arena.arena.games.registry import registry
from src.game_reasoning_arena.arena.agents.policy_manager import (
initialize_policies, policy_mapping_fn
)
# Create configuration
config = create_config_for_gradio_game(
game_name=game_name,
player1_type=player1_type,
player2_type=player2_type,
player1_model=player1_model,
player2_model=player2_model,
rounds=rounds,
seed=seed
)
# Set seed
set_seed(seed)
# Initialize LLM registry (required for simulate_game)
initialize_llm_registry()
# Use existing infrastructure but capture detailed logs
return _run_game_with_detailed_logging(game_name, config, seed)
except ImportError as e:
logger.error(f"Failed to import simulation infrastructure: {e}")
return f"Error: Simulation infrastructure not available. {e}"
except Exception as e:
logger.error(f"Game simulation failed: {e}")
return f"Error during game simulation: {e}"
def _run_game_with_detailed_logging(
game_name: str,
config: Dict[str, Any],
seed: int
) -> str:
"""
Run game simulation with detailed logging for Gradio display.
This reuses the existing infrastructure components but captures
detailed game state information for user display.
"""
from src.game_reasoning_arena.arena.games.registry import registry
from src.game_reasoning_arena.arena.agents.policy_manager import (
initialize_policies, policy_mapping_fn
)
# Initialize using existing infrastructure
policies_dict = initialize_policies(config, game_name, seed)
env = registry.make_env(game_name, config)
# Create player mapping (reusing existing logic)
player_to_agent = {}
for i, policy_name in enumerate(policies_dict.keys()):
player_to_agent[i] = policies_dict[policy_name]
game_log = []
# Add header
game_log.append("🎮 GAME SIMULATION RESULTS")
game_log.append("=" * 50)
game_log.append(f"Game: {game_name.replace('_', ' ').title()}")
game_log.append(f"Episodes: {config['num_episodes']}")
game_log.append("")
# Player information
game_log.append("👥 PLAYERS:")
player1 = config["agents"]["player_0"]
player2 = config["agents"]["player_1"]
game_log.append(f" Player 0: {_format_player_info(player1)}")
game_log.append(f" Player 1: {_format_player_info(player2)}")
game_log.append("")
# Run episodes (reusing compute_actions logic from simulate.py)
for episode in range(config["num_episodes"]):
episode_seed = seed + episode
game_log.append(f"🎯 Episode {episode + 1}")
game_log.append("-" * 30)
observation_dict, _ = env.reset(seed=episode_seed)
terminated = truncated = False
step_count = 0
episode_rewards = {0: 0, 1: 0}
while not (terminated or truncated):
step_count += 1
game_log.append(f"\n📋 Step {step_count}")
# Show board state
try:
board = env.render_board(0)
game_log.append("Current board:")
game_log.append(board)
except:
game_log.append("Board state not available")
# Use the existing compute_actions logic from simulate.py
try:
action_dict = _compute_actions_for_gradio(
env, player_to_agent, observation_dict, game_log
)
except Exception as e:
game_log.append(f"❌ Error computing actions: {e}")
truncated = True
break
# Step forward (reusing existing environment logic)
if not truncated:
observation_dict, rewards, terminated, truncated, _ = env.step(action_dict)
for player_id, reward in rewards.items():
episode_rewards[player_id] += reward
# Episode results
game_log.append(f"\n🏁 Episode {episode + 1} Complete!")
try:
game_log.append("Final board:")
game_log.append(env.render_board(0))
except:
game_log.append("Final board state not available")
if episode_rewards[0] > episode_rewards[1]:
winner = "Player 0"
elif episode_rewards[1] > episode_rewards[0]:
winner = "Player 1"
else:
winner = "Draw"
game_log.append(f"🏆 Winner: {winner}")
game_log.append(f"📊 Scores: Player 0={episode_rewards[0]}, Player 1={episode_rewards[1]}")
game_log.append("")
game_log.append("✅ Simulation completed successfully!")
game_log.append("Check the database logs for detailed move analysis.")
return "\n".join(game_log)
def _compute_actions_for_gradio(env, player_to_agent, observations, game_log):
"""
Compute actions and log details for Gradio display.
This reuses the compute_actions logic from simulate.py.
"""
if env.state.is_simultaneous_node():
# Simultaneous-move game
actions = {}
for player in player_to_agent:
agent_response = player_to_agent[player](observations[player])
action, reasoning = _extract_action_and_reasoning(agent_response)
actions[player] = action
# Always show both action number and action name (universal solution)
try:
action_name = env.state.action_to_string(player, action)
except Exception:
action_name = str(action)
game_log.append(f" Player {player} chooses action {action} ({action_name})")
if reasoning and reasoning != "None":
reasoning_preview = reasoning[:100] + ("..." if len(reasoning) > 100 else "")
game_log.append(f" Reasoning: {reasoning_preview}")
return actions
else:
# Turn-based game
current_player = env.state.current_player()
game_log.append(f"Player {current_player}'s turn")
agent_response = player_to_agent[current_player](observations[current_player])
action, reasoning = _extract_action_and_reasoning(agent_response)
game_log.append(f" Player {current_player} chooses action {action}")
if reasoning and reasoning != "None":
reasoning_preview = reasoning[:100] + ("..." if len(reasoning) > 100 else "")
game_log.append(f" Reasoning: {reasoning_preview}")
return {current_player: action}
def _extract_action_and_reasoning(agent_response):
"""Extract action and reasoning from agent response."""
if isinstance(agent_response, dict) and "action" in agent_response:
action = agent_response.get("action", -1)
reasoning = agent_response.get("reasoning", "None")
return action, reasoning
else:
return agent_response, "None"
def _format_player_info(player_config: Dict[str, Any]) -> str:
"""Format player information for display."""
player_type = player_config["type"]
if player_type == "llm":
model = player_config.get("model", "unknown")
return f"LLM ({model})"
else:
return player_type.replace("_", " ").title()
# For backward compatibility and easy integration
def create_gradio_compatible_config(
game_name: str,
player1_type: str,
player2_type: str,
player1_model: str = None,
player2_model: str = None,
rounds: int = 1
) -> Tuple[Dict[str, Any], str]:
"""
Create both a config dict and a temp file for maximum compatibility.
Returns:
Tuple of (config_dict, temp_file_path)
"""
config = create_config_for_gradio_game(
game_name, player1_type, player2_type,
player1_model, player2_model, rounds
)
temp_file = create_temporary_config_file(config)
return config, temp_file
if __name__ == "__main__":
# Example usage
config = create_config_for_gradio_game(
game_name="tic_tac_toe",
player1_type="llm",
player2_type="random",
player1_model="litellm_groq/llama-3.1-8b-instant",
rounds=3
)
print("Generated configuration:")
print(yaml.dump(config, default_flow_style=False))