docling / README.md
levalencia's picture
Enhance Dockerfile and Streamlit app for comprehensive environment setup and permission testing
98aae70
metadata
title: Docling
emoji: πŸš€
colorFrom: red
colorTo: red
sdk: docker
app_port: 8501
tags:
  - streamlit
pinned: false
short_description: Streamlit template space

Welcome to Streamlit!

Edit /src/streamlit_app.py to customize this app to your heart's desire. :heart:

If you have any questions, checkout our documentation and community forums.

Medical Document Parser & Redactor

A sophisticated medical document processing application that uses Docling (structure-aware parser) to parse PDF medical documents and automatically redact medication information using AI-powered analysis.

🎯 Overview

This application provides a Streamlit-based interface for uploading medical PDF documents, parsing them with Docling to extract structured content, and using Azure OpenAI to intelligently identify and redact formal medication lists while preserving clinical context.

πŸ—οΈ Project Structure

docling/
β”œβ”€β”€ src/                          # Main source code
β”‚   β”œβ”€β”€ processing/               # Core processing logic
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ document_processor.py # Main document processing pipeline
β”‚   β”‚   β”œβ”€β”€ llm_extractor.py      # Azure OpenAI integration for medication detection
β”‚   β”‚   └── sections.py           # Section extraction and redaction logic
β”‚   β”œβ”€β”€ utils/                    # Utility functions
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   └── logging_utils.py      # Logging configuration and handlers
β”‚   └── streamlit_app.py          # Main Streamlit application interface
β”œβ”€β”€ temp_files/                   # Temporary file storage (auto-created)
β”œβ”€β”€ .env                          # Environment variables (Azure OpenAI credentials)
β”œβ”€β”€ requirements.txt              # Python dependencies
β”œβ”€β”€ pyproject.toml               # Project configuration
β”œβ”€β”€ Dockerfile                   # Container configuration
└── README.md                    # This file

πŸ“ File Responsibilities

Core Processing Files

src/processing/document_processor.py

Purpose: Main document processing pipeline that orchestrates the entire workflow.

Key Classes:

  • DocumentResult: Data class holding processed results
  • DocumentProcessor: Main processing class

Key Functions:

  • process(file_path): Main processing method
  • _export_redacted_markdown(): Generates redacted markdown
  • _reconstruct_markdown_from_filtered_texts(): Reconstructs markdown from filtered content

Responsibilities:

  • Document conversion using Docling
  • Section redaction coordination
  • Markdown generation and reconstruction
  • File persistence and logging

src/processing/llm_extractor.py

Purpose: Azure OpenAI integration for intelligent medication detection.

Key Classes:

  • AzureO1MedicationExtractor: LLM-based medication extractor

Key Functions:

  • extract_medication_sections(doc_json): Main extraction method
  • __init__(): Azure OpenAI client initialization

Responsibilities:

  • Azure OpenAI API communication
  • Medication section identification
  • Structured JSON response generation
  • Error handling and logging

src/processing/sections.py

Purpose: Section extraction and redaction logic.

Key Classes:

  • ReasoningSectionExtractor: AI-powered section extractor
  • SectionDefinition: Section definition data class
  • SectionExtractor: Traditional regex-based extractor

Key Functions:

  • remove_sections_from_json(): JSON-based section removal
  • remove_sections(): Text-based section removal (fallback)

Responsibilities:

  • Section identification and removal
  • JSON structure manipulation
  • Text processing and redaction
  • Reasoning logging and transparency

Interface Files

src/streamlit_app.py

Purpose: Main Streamlit web application interface.

Key Functions:

  • save_uploaded_file(): File upload handling
  • cleanup_temp_files(): Temporary file management
  • create_diff_content(): Diff view generation

Responsibilities:

  • User interface and interaction
  • File upload and management
  • Visualization and diff display
  • Session state management
  • Download functionality

Utility Files

src/utils/logging_utils.py

Purpose: Logging configuration and management.

Key Functions:

  • get_log_handler(): Creates in-memory log handlers
  • Log buffer management for UI display

Responsibilities:

  • Logging setup and configuration
  • In-memory log capture
  • Log display in UI

πŸ”§ Detailed Function Documentation

Document Processing Pipeline

DocumentProcessor.process(file_path: str) -> DocumentResult

Purpose: Main entry point for document processing.

Parameters:

  • file_path: Path to the PDF file to process

Returns:

  • DocumentResult: Object containing all processing results

Process Flow:

  1. Converts PDF using Docling
  2. Exports structured markdown and JSON
  3. Applies section redaction if extractor is provided
  4. Persists results to temporary files
  5. Returns comprehensive result object

Example Usage:

processor = DocumentProcessor(section_extractor=extractor)
result = processor.process("document.pdf")
print(f"Original: {len(result.structured_markdown)} chars")
print(f"Redacted: {len(result.redacted_markdown)} chars")

AzureO1MedicationExtractor.extract_medication_sections(doc_json: Dict) -> Dict

Purpose: Uses Azure OpenAI to identify medication sections for redaction.

Parameters:

  • doc_json: Docling-generated JSON structure

Returns:

  • Dictionary with indices to remove and reasoning

Process Flow:

  1. Analyzes document structure
  2. Sends structured prompt to Azure OpenAI
  3. Parses JSON response
  4. Validates and limits results
  5. Returns structured analysis

Example Usage:

extractor = AzureO1MedicationExtractor(endpoint, api_key, version, deployment)
result = extractor.extract_medication_sections(doc_json)
print(f"Removing {len(result['indices_to_remove'])} elements")

ReasoningSectionExtractor.remove_sections_from_json(doc_json: Dict) -> Dict

Purpose: Removes identified sections from JSON structure.

Parameters:

  • doc_json: Original document JSON structure

Returns:

  • Redacted JSON structure

Process Flow:

  1. Calls LLM extractor for analysis
  2. Logs detailed reasoning
  3. Removes identified text elements
  4. Updates document structure
  5. Returns redacted JSON

🚨 Troubleshooting

Permission Error: [Errno 13] Permission denied: '/.cache'

Problem: When deploying to Hugging Face Spaces, you may encounter a permission error where the application tries to create cache directories in the root filesystem (/.cache).

Root Cause: Hugging Face Hub and other ML libraries try to create cache directories in the root filesystem by default, but containers in Hugging Face Spaces don't have permission to write to the root directory.

Solution: This application includes comprehensive environment variable configuration to redirect all cache directories to writable locations:

  1. Environment Variables: All cache directories are redirected to /tmp/docling_temp/
  2. Lazy Initialization: DocumentConverter is initialized lazily to ensure environment variables are set first
  3. Startup Script: Docker container uses a startup script that sets all necessary environment variables
  4. Test Script: test_permissions.py verifies the environment setup

Files Modified:

  • src/streamlit_app.py: Environment variables set at the very beginning
  • src/processing/document_processor.py: Lazy initialization of DocumentConverter
  • Dockerfile: Environment variables and startup script
  • test_permissions.py: Environment verification script

Testing: Run the test script to verify the environment:

python test_permissions.py

Expected Output:

βœ… ALL TESTS PASSED
πŸŽ‰ All tests passed! The environment is ready for Docling.

Other Common Issues

Memory Issues

  • Problem: Large PDF files may cause memory issues
  • Solution: The application includes automatic cleanup of temporary files and memory management

Azure OpenAI Configuration

  • Problem: Missing or incorrect Azure OpenAI credentials
  • Solution: Ensure .env file contains:
    AZURE_OPENAI_ENDPOINT=your_endpoint
    AZURE_OPENAI_KEY=your_key
    AZURE_OPENAI_VERSION=your_version
    AZURE_OPENAI_DEPLOYMENT=your_deployment
    

File Upload Issues

  • Problem: Files not uploading or processing
  • Solution: Check file size limits and ensure PDF format is supported

πŸ”§ Development and Deployment

Local Development

  1. Clone the repository
  2. Install dependencies: pip install -r requirements.txt
  3. Set up environment variables in .env
  4. Run the test script: python test_permissions.py
  5. Start the app: streamlit run src/streamlit_app.py

Hugging Face Spaces Deployment

  1. Push code to repository
  2. Ensure Dockerfile is present
  3. Set environment variables in Spaces settings
  4. Deploy and monitor logs for any issues

Environment Variables

The application uses these environment variables to control cache directories:

# Core temp directory
TEMP_DIR=/tmp/docling_temp

# Hugging Face Hub
HF_HOME=/tmp/docling_temp/huggingface
HF_CACHE_HOME=/tmp/docling_temp/huggingface_cache
HF_HUB_CACHE=/tmp/docling_temp/huggingface_cache

# ML Libraries
TRANSFORMERS_CACHE=/tmp/docling_temp/transformers_cache
HF_DATASETS_CACHE=/tmp/docling_temp/datasets_cache
TORCH_HOME=/tmp/docling_temp/torch
TENSORFLOW_HOME=/tmp/docling_temp/tensorflow
KERAS_HOME=/tmp/docling_temp/keras

# XDG Directories
XDG_CACHE_HOME=/tmp/docling_temp/cache
XDG_CONFIG_HOME=/tmp/docling_temp/config
XDG_DATA_HOME=/tmp/docling_temp/data

πŸ“Š Performance and Monitoring

Memory Management

  • Automatic cleanup of temporary files
  • Session state management
  • File size monitoring

Logging

  • Comprehensive logging throughout the application
  • In-memory log capture for UI display
  • Error tracking and debugging information

Caching

  • Hugging Face model caching in temp directories
  • Document processing result caching
  • Session state persistence