bank_transaction / train_models.py
leynessa's picture
Upload 8 files
ff52cdd verified
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.metrics import classification_report
import joblib
df = pd.read_csv('cleaned_data.csv')
X = df['cleaned_text']
y = df['transaction_type']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
vectorizer = TfidfVectorizer()
X_train_vec = vectorizer.fit_transform(X_train)
X_test_vec = vectorizer.transform(X_test)
models = {
"Naive Bayes": MultinomialNB(),
"Logistic Regression": LogisticRegression(max_iter=1000),
"SVM": LinearSVC()
}
best_model = None
best_f1 = 0
for name, model in models.items():
model.fit(X_train_vec, y_train)
preds = model.predict(X_test_vec)
report = classification_report(y_test, preds, output_dict=True)
print(f"\n{name}\n", classification_report(y_test, preds))
if report['weighted avg']['f1-score'] > best_f1:
best_f1 = report['weighted avg']['f1-score']
best_model = model
# Save best model and vectorizer
joblib.dump(best_model, 'final_model.pkl')
joblib.dump(vectorizer, 'tfidf_vectorizer.pkl')