Spaces:
Runtime error
Runtime error
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.naive_bayes import MultinomialNB | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.svm import LinearSVC | |
from sklearn.metrics import classification_report | |
import joblib | |
df = pd.read_csv('cleaned_data.csv') | |
X = df['cleaned_text'] | |
y = df['transaction_type'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
vectorizer = TfidfVectorizer() | |
X_train_vec = vectorizer.fit_transform(X_train) | |
X_test_vec = vectorizer.transform(X_test) | |
models = { | |
"Naive Bayes": MultinomialNB(), | |
"Logistic Regression": LogisticRegression(max_iter=1000), | |
"SVM": LinearSVC() | |
} | |
best_model = None | |
best_f1 = 0 | |
for name, model in models.items(): | |
model.fit(X_train_vec, y_train) | |
preds = model.predict(X_test_vec) | |
report = classification_report(y_test, preds, output_dict=True) | |
print(f"\n{name}\n", classification_report(y_test, preds)) | |
if report['weighted avg']['f1-score'] > best_f1: | |
best_f1 = report['weighted avg']['f1-score'] | |
best_model = model | |
# Save best model and vectorizer | |
joblib.dump(best_model, 'final_model.pkl') | |
joblib.dump(vectorizer, 'tfidf_vectorizer.pkl') | |