model / setup-files.py
likhonsheikh's picture
Upload 10 files
aba8087 verified
I'll help you create Docker files and set up hosting for the DeepCoder model. Let me create the necessary files for both Docker setup and potential Hugging Face deployment.
# Dockerfile for DeepCoder AI Model
FROM python:3.11-slim
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y \
curl \
wget \
git \
&& rm -rf /var/lib/apt/lists/*
# Install Docker Model Runner (assuming it's a Python package or CLI tool)
RUN pip install --no-cache-dir \
torch \
transformers \
accelerate \
bitsandbytes \
huggingface_hub
# Create directories for model and cache
RUN mkdir -p /app/models /app/cache
# Set environment variables
ENV MODEL_NAME="ai/deepcoder-preview"
ENV MODEL_VARIANT="14B-Q4_K_M"
ENV HUGGINGFACE_HUB_CACHE="/app/cache"
ENV TRANSFORMERS_CACHE="/app/cache"
# Copy application files
COPY requirements.txt .
COPY app.py .
COPY download_model.py .
# Install Python dependencies
RUN pip install --no-cache-dir -r requirements.txt
# Download model during build (optional - can be done at runtime)
# RUN python download_model.py
# Expose port for API
EXPOSE 8000
# Health check
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
# Run the application
CMD ["python", "app.py"]
version: '3.8'
services:
deepcoder-api:
build:
context: .
dockerfile: Dockerfile
container_name: deepcoder-model
ports:
- "8000:8000"
environment:
- MODEL_NAME=ai/deepcoder-preview
- MODEL_VARIANT=14B-Q4_K_M
- HUGGINGFACE_HUB_CACHE=/app/cache
- CUDA_VISIBLE_DEVICES=0
volumes:
- ./models:/app/models
- ./cache:/app/cache
- ./logs:/app/logs
restart: unless-stopped
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 40s
nginx:
image: nginx:alpine
container_name: deepcoder-nginx
ports:
- "80:80"
- "443:443"
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
- ./ssl:/etc/nginx/ssl
depends_on:
- deepcoder-api
restart: unless-stopped
volumes:
models:
cache:
logs:
#!/usr/bin/env python3
"""
DeepCoder Model API Server
Serves the DeepCoder-14B model via FastAPI
"""
import os
import asyncio
import logging
from typing import Optional, Dict, Any
import uvicorn
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import hf_hub_download
import json
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
MODEL_NAME = os.getenv("MODEL_NAME", "ai/deepcoder-preview")
MODEL_VARIANT = os.getenv("MODEL_VARIANT", "14B-Q4_K_M")
CACHE_DIR = os.getenv("HUGGINGFACE_HUB_CACHE", "/app/cache")
MAX_TOKENS = 131072 # 131K context length
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
app = FastAPI(
title="DeepCoder API",
description="AI Code Generation Model API",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global model variables
tokenizer = None
model = None
model_loaded = False
class CodeRequest(BaseModel):
prompt: str = Field(..., description="Code generation prompt")
temperature: float = Field(0.6, ge=0.0, le=2.0, description="Sampling temperature")
top_p: float = Field(0.95, ge=0.0, le=1.0, description="Top-p sampling")
max_tokens: int = Field(2048, ge=1, le=8192, description="Maximum tokens to generate")
stop_sequences: Optional[list] = Field(None, description="Stop sequences")
class CodeResponse(BaseModel):
generated_code: str
model_info: Dict[str, Any]
generation_params: Dict[str, Any]
async def load_model():
"""Load the DeepCoder model and tokenizer"""
global tokenizer, model, model_loaded
if model_loaded:
return
try:
logger.info(f"Loading model: {MODEL_NAME}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
cache_dir=CACHE_DIR,
trust_remote_code=True
)
# Load model with appropriate settings for the quantized version
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=CACHE_DIR,
trust_remote_code=True,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None,
load_in_4bit=True if "Q4" in MODEL_VARIANT else False,
)
if DEVICE == "cpu" and hasattr(model, 'to'):
model = model.to(DEVICE)
model_loaded = True
logger.info(f"Model loaded successfully on {DEVICE}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
@app.on_event("startup")
async def startup_event():
"""Load model on startup"""
await load_model()
@app.get("/")
async def root():
return {
"message": "DeepCoder API",
"model": MODEL_NAME,
"variant": MODEL_VARIANT,
"status": "ready" if model_loaded else "loading"
}
@app.get("/health")
async def health_check():
return {
"status": "healthy" if model_loaded else "loading",
"model_loaded": model_loaded,
"device": DEVICE,
"gpu_available": torch.cuda.is_available()
}
@app.get("/model/info")
async def model_info():
"""Get model information"""
if not model_loaded:
raise HTTPException(status_code=503, detail="Model not loaded yet")
return {
"model_name": MODEL_NAME,
"variant": MODEL_VARIANT,
"max_context_length": MAX_TOKENS,
"device": DEVICE,
"model_size": "14B parameters",
"quantization": "Q4_K_M" if "Q4" in MODEL_VARIANT else "None",
"benchmarks": {
"LiveCodeBench_v5_Pass@1": "60.6%",
"Codeforces_Elo": 1936,
"Codeforces_Percentile": "95.3",
"HumanEval+_Accuracy": "92.6%"
}
}
@app.post("/generate", response_model=CodeResponse)
async def generate_code(request: CodeRequest):
"""Generate code using the DeepCoder model"""
if not model_loaded:
raise HTTPException(status_code=503, detail="Model not loaded yet")
try:
# Tokenize input
inputs = tokenizer(
request.prompt,
return_tensors="pt",
truncation=True,
max_length=MAX_TOKENS - request.max_tokens
)
if DEVICE == "cuda":
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
# Generation parameters
generation_kwargs = {
"max_new_tokens": request.max_tokens,
"temperature": request.temperature,
"top_p": request.top_p,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
}
if request.stop_sequences:
generation_kwargs["stop_sequences"] = request.stop_sequences
# Generate
with torch.no_grad():
outputs = model.generate(**inputs, **generation_kwargs)
# Decode output
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:]
generated_code = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return CodeResponse(
generated_code=generated_code,
model_info={
"model_name": MODEL_NAME,
"variant": MODEL_VARIANT,
"device": DEVICE
},
generation_params={
"temperature": request.temperature,
"top_p": request.top_p,
"max_tokens": request.max_tokens
}
)
except Exception as e:
logger.error(f"Generation error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
@app.post("/chat")
async def chat_completion(request: CodeRequest):
"""Chat-style completion for code assistance"""
# Add system context for better code generation
system_prompt = """You are DeepCoder, an expert AI programming assistant. Generate high-quality, well-commented code that follows best practices."""
full_prompt = f"{system_prompt}\n\nUser: {request.prompt}\n\nAssistant:"
# Create modified request with system prompt
modified_request = CodeRequest(
prompt=full_prompt,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens,
stop_sequences=request.stop_sequences
)
return await generate_code(modified_request)
if __name__ == "__main__":
uvicorn.run(
"app:app",
host="0.0.0.0",
port=8000,
reload=False,
log_level="info"
)
fastapi==0.104.1
uvicorn[standard]==0.24.0
torch>=2.0.0
transformers>=4.35.0
accelerate>=0.24.0
bitsandbytes>=0.41.0
huggingface_hub>=0.19.0
pydantic>=2.5.0
python-multipart==0.0.6
jinja2>=3.1.0
aiofiles>=23.0.0
nvidia-ml-py3>=7.352.0
psutil>=5.9.0
requests>=2.31.0
#!/usr/bin/env python3
"""
Download script for DeepCoder model
Downloads and caches the model for faster container startup
"""
import os
import logging
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import snapshot_download
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
MODEL_NAME = os.getenv("MODEL_NAME", "ai/deepcoder-preview")
CACHE_DIR = os.getenv("HUGGINGFACE_HUB_CACHE", "/app/cache")
def download_model():
"""Download the model and tokenizer"""
try:
logger.info(f"Downloading model: {MODEL_NAME}")
# Download model files
snapshot_download(
repo_id=MODEL_NAME,
cache_dir=CACHE_DIR,
resume_download=True
)
# Verify by loading tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
cache_dir=CACHE_DIR,
trust_remote_code=True
)
logger.info("Model downloaded successfully")
logger.info(f"Vocab size: {tokenizer.vocab_size}")
logger.info(f"Cache directory: {CACHE_DIR}")
return True
except Exception as e:
logger.error(f"Error downloading model: {str(e)}")
return False
if __name__ == "__main__":
success = download_model()
if not success:
exit(1)
logger.info("Download complete!")
events {
worker_connections 1024;
}
http {
upstream deepcoder_backend {
server deepcoder-api:8000;
}
# Rate limiting
limit_req_zone $binary_remote_addr zone=api:10m rate=10r/m;
server {
listen 80;
server_name localhost;
# Security headers
add_header X-Frame-Options DENY;
add_header X-Content-Type-Options nosniff;
add_header X-XSS-Protection "1; mode=block";
# Increase client max body size for large code submissions
client_max_body_size 10M;
# Timeouts for long-running generation requests
proxy_connect_timeout 60s;
proxy_send_timeout 300s;
proxy_read_timeout 300s;
location / {
proxy_pass http://deepcoder_backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
}
location /generate {
limit_req zone=api burst=5 nodelay;
proxy_pass http://deepcoder_backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
}
location /health {
proxy_pass http://deepcoder_backend;
access_log off;
}
}
}
#!/bin/bash
# setup.sh - Setup script for DeepCoder deployment
set -e
echo "πŸš€ DeepCoder Model Setup"
echo "========================"
# Create necessary directories
echo "πŸ“ Creating directories..."
mkdir -p models cache logs ssl
# Set permissions
chmod 755 models cache logs
chmod 700 ssl
# Pull the DeepCoder model using Docker Model Runner
echo "πŸ“¦ Pulling DeepCoder model..."
if command -v docker &> /dev/null; then
# Assuming docker model runner is available
docker model pull ai/deepcoder-preview
else
echo "⚠️ Docker not found. Please install Docker first."
exit 1
fi
# Check for GPU support
echo "πŸ” Checking GPU support..."
if command -v nvidia-smi &> /dev/null; then
echo "βœ… NVIDIA GPU detected:"
nvidia-smi --query-gpu=gpu_name,memory.total --format=csv,noheader
# Check for Docker GPU support
if docker run --rm --gpus all nvidia/cuda:11.8-base nvidia-smi &> /dev/null; then
echo "βœ… Docker GPU support verified"
export GPU_SUPPORT=true
else
echo "⚠️ Docker GPU support not available"
export GPU_SUPPORT=false
fi
else
echo "⚠️ No GPU detected. Running on CPU."
export GPU_SUPPORT=false
fi
# Build and start containers
echo "πŸ—οΈ Building Docker containers..."
docker-compose build
echo "πŸš€ Starting services..."
if [ "$GPU_SUPPORT" = true ]; then
docker-compose up -d
else
# Remove GPU requirements for CPU-only deployment
sed 's/devices:/# devices:/g' docker-compose.yml | \
sed 's/- driver: nvidia/# - driver: nvidia/g' | \
sed 's/count: 1/# count: 1/g' | \
sed 's/capabilities: \[gpu\]/# capabilities: [gpu]/g' > docker-compose-cpu.yml
docker-compose -f docker-compose-cpu.yml up -d
fi
# Wait for services to be ready
echo "⏳ Waiting for services to start..."
sleep 30
# Health check
echo "πŸ₯ Performing health check..."
for i in {1..10}; do
if curl -f http://localhost:8000/health > /dev/null 2>&1; then
echo "βœ… DeepCoder API is healthy!"
break
else
echo "⏳ Waiting for API to be ready... (attempt $i/10)"
sleep 10
fi
done
# Show status
echo "πŸ“Š Service Status:"
docker-compose ps
echo ""
echo "πŸŽ‰ DeepCoder setup complete!"
echo "API endpoint: http://localhost:8000"
echo "Health check: http://localhost:8000/health"
echo "Model info: http://localhost:8000/model/info"
echo ""
echo "To test the API:"
echo "curl -X POST http://localhost:8000/generate \\"
echo " -H 'Content-Type: application/json' \\"
echo " -d '{\"prompt\": \"def fibonacci(n):\", \"max_tokens\": 200}'"
###########################################
# deploy-hf.sh - Hugging Face Spaces deployment
###########################################
cat > deploy-hf.sh << 'EOL'
#!/bin/bash
# Deploy to Hugging Face Spaces
set -e
echo "πŸ€— Deploying to Hugging Face Spaces"
echo "===================================="
# Check if git is configured
if ! git config user.email > /dev/null; then
echo "⚠️ Please configure git:"
echo "git config --global user.email 'your-email@example.com'"
echo "git config --global user.name 'Your Name'"
exit 1
fi
# Check if HF_TOKEN is set
if [ -z "$HF_TOKEN" ]; then
echo "⚠️ Please set your Hugging Face token:"
echo "export HF_TOKEN=your_hf_token_here"
exit 1
fi
SPACE_NAME=${1:-"deepcoder-api"}
HF_USERNAME=${2:-$(whoami)}
echo "Creating Space: $HF_USERNAME/$SPACE_NAME"
# Create Hugging Face Space files
cat > README.md << EOF
---
title: DeepCoder API
emoji: πŸš€
colorFrom: blue
colorTo: green
sdk: docker
pinned: false
license: mit
---
# DeepCoder API
High-performance code generation API powered by DeepCoder-14B model.
## Features
- 🎯 60.6% pass rate on LiveCodeBench v5
- πŸ† 1936 Elo rating on Codeforces (95.3 percentile)
- πŸ“ 92.6% accuracy on HumanEval+
- ⚑ 131K token context length
- πŸ”§ Optimized Q4_K_M quantization
## API Endpoints
- \`POST /generate\` - Generate code from prompts
- \`POST /chat\` - Chat-style code assistance
- \`GET /model/info\` - Model information
- \`GET /health\` - Health check
## Usage
\`\`\`bash
curl -X POST /generate \\
-H 'Content-Type: application/json' \\
-d '{"prompt": "def fibonacci(n):", "max_tokens": 200}'
\`\`\`
EOF
# Create Dockerfile for HF Spaces
cat > Dockerfile.hf << EOF
FROM python:3.11-slim
WORKDIR /app
RUN apt-get update && apt-get install -y curl git && rm -rf /var/lib/apt/lists/*
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 7860
CMD ["python", "-m", "uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
EOF
# Update app.py for HF Spaces (port 7860)
sed 's/port=8000/port=7860/g' app.py > app_hf.py
mv app_hf.py app.py
# Initialize git repo if not exists
if [ ! -d .git ]; then
git init
git lfs install
fi
# Track large model files with git LFS
echo "*.bin filter=lfs diff=lfs merge=lfs -text" >> .gitattributes
echo "*.safetensors filter=lfs diff=lfs merge=lfs -text" >> .gitattributes
# Add remote if not exists
if ! git remote get-url origin > /dev/null 2>&1; then
git remote add origin https://huggingface.co/spaces/$HF_USERNAME/$SPACE_NAME
fi
# Commit and push
git add .
git commit -m "Initial DeepCoder API deployment" || true
git push -u origin main
echo "βœ… Deployed to: https://huggingface.co/spaces/$HF_USERNAME/$SPACE_NAME"
EOL
chmod +x deploy-hf.sh
echo "πŸ“ Additional deployment script created: deploy-hf.sh"