Spaces:
Runtime error
Runtime error
I'll help you create Docker files and set up hosting for the DeepCoder model. Let me create the necessary files for both Docker setup and potential Hugging Face deployment. | |
# Dockerfile for DeepCoder AI Model | |
FROM python:3.11-slim | |
# Set working directory | |
WORKDIR /app | |
# Install system dependencies | |
RUN apt-get update && apt-get install -y \ | |
curl \ | |
wget \ | |
git \ | |
&& rm -rf /var/lib/apt/lists/* | |
# Install Docker Model Runner (assuming it's a Python package or CLI tool) | |
RUN pip install --no-cache-dir \ | |
torch \ | |
transformers \ | |
accelerate \ | |
bitsandbytes \ | |
huggingface_hub | |
# Create directories for model and cache | |
RUN mkdir -p /app/models /app/cache | |
# Set environment variables | |
ENV MODEL_NAME="ai/deepcoder-preview" | |
ENV MODEL_VARIANT="14B-Q4_K_M" | |
ENV HUGGINGFACE_HUB_CACHE="/app/cache" | |
ENV TRANSFORMERS_CACHE="/app/cache" | |
# Copy application files | |
COPY requirements.txt . | |
COPY app.py . | |
COPY download_model.py . | |
# Install Python dependencies | |
RUN pip install --no-cache-dir -r requirements.txt | |
# Download model during build (optional - can be done at runtime) | |
# RUN python download_model.py | |
# Expose port for API | |
EXPOSE 8000 | |
# Health check | |
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \ | |
CMD curl -f http://localhost:8000/health || exit 1 | |
# Run the application | |
CMD ["python", "app.py"] | |
version: '3.8' | |
services: | |
deepcoder-api: | |
build: | |
context: . | |
dockerfile: Dockerfile | |
container_name: deepcoder-model | |
ports: | |
- "8000:8000" | |
environment: | |
- MODEL_NAME=ai/deepcoder-preview | |
- MODEL_VARIANT=14B-Q4_K_M | |
- HUGGINGFACE_HUB_CACHE=/app/cache | |
- CUDA_VISIBLE_DEVICES=0 | |
volumes: | |
- ./models:/app/models | |
- ./cache:/app/cache | |
- ./logs:/app/logs | |
restart: unless-stopped | |
deploy: | |
resources: | |
reservations: | |
devices: | |
- driver: nvidia | |
count: 1 | |
capabilities: [gpu] | |
healthcheck: | |
test: ["CMD", "curl", "-f", "http://localhost:8000/health"] | |
interval: 30s | |
timeout: 10s | |
retries: 3 | |
start_period: 40s | |
nginx: | |
image: nginx:alpine | |
container_name: deepcoder-nginx | |
ports: | |
- "80:80" | |
- "443:443" | |
volumes: | |
- ./nginx.conf:/etc/nginx/nginx.conf | |
- ./ssl:/etc/nginx/ssl | |
depends_on: | |
- deepcoder-api | |
restart: unless-stopped | |
volumes: | |
models: | |
cache: | |
logs: | |
#!/usr/bin/env python3 | |
""" | |
DeepCoder Model API Server | |
Serves the DeepCoder-14B model via FastAPI | |
""" | |
import os | |
import asyncio | |
import logging | |
from typing import Optional, Dict, Any | |
import uvicorn | |
from fastapi import FastAPI, HTTPException, BackgroundTasks | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel, Field | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from huggingface_hub import hf_hub_download | |
import json | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Configuration | |
MODEL_NAME = os.getenv("MODEL_NAME", "ai/deepcoder-preview") | |
MODEL_VARIANT = os.getenv("MODEL_VARIANT", "14B-Q4_K_M") | |
CACHE_DIR = os.getenv("HUGGINGFACE_HUB_CACHE", "/app/cache") | |
MAX_TOKENS = 131072 # 131K context length | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
app = FastAPI( | |
title="DeepCoder API", | |
description="AI Code Generation Model API", | |
version="1.0.0" | |
) | |
# CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Global model variables | |
tokenizer = None | |
model = None | |
model_loaded = False | |
class CodeRequest(BaseModel): | |
prompt: str = Field(..., description="Code generation prompt") | |
temperature: float = Field(0.6, ge=0.0, le=2.0, description="Sampling temperature") | |
top_p: float = Field(0.95, ge=0.0, le=1.0, description="Top-p sampling") | |
max_tokens: int = Field(2048, ge=1, le=8192, description="Maximum tokens to generate") | |
stop_sequences: Optional[list] = Field(None, description="Stop sequences") | |
class CodeResponse(BaseModel): | |
generated_code: str | |
model_info: Dict[str, Any] | |
generation_params: Dict[str, Any] | |
async def load_model(): | |
"""Load the DeepCoder model and tokenizer""" | |
global tokenizer, model, model_loaded | |
if model_loaded: | |
return | |
try: | |
logger.info(f"Loading model: {MODEL_NAME}") | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_NAME, | |
cache_dir=CACHE_DIR, | |
trust_remote_code=True | |
) | |
# Load model with appropriate settings for the quantized version | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
cache_dir=CACHE_DIR, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32, | |
device_map="auto" if DEVICE == "cuda" else None, | |
load_in_4bit=True if "Q4" in MODEL_VARIANT else False, | |
) | |
if DEVICE == "cpu" and hasattr(model, 'to'): | |
model = model.to(DEVICE) | |
model_loaded = True | |
logger.info(f"Model loaded successfully on {DEVICE}") | |
except Exception as e: | |
logger.error(f"Error loading model: {str(e)}") | |
raise | |
async def startup_event(): | |
"""Load model on startup""" | |
await load_model() | |
async def root(): | |
return { | |
"message": "DeepCoder API", | |
"model": MODEL_NAME, | |
"variant": MODEL_VARIANT, | |
"status": "ready" if model_loaded else "loading" | |
} | |
async def health_check(): | |
return { | |
"status": "healthy" if model_loaded else "loading", | |
"model_loaded": model_loaded, | |
"device": DEVICE, | |
"gpu_available": torch.cuda.is_available() | |
} | |
async def model_info(): | |
"""Get model information""" | |
if not model_loaded: | |
raise HTTPException(status_code=503, detail="Model not loaded yet") | |
return { | |
"model_name": MODEL_NAME, | |
"variant": MODEL_VARIANT, | |
"max_context_length": MAX_TOKENS, | |
"device": DEVICE, | |
"model_size": "14B parameters", | |
"quantization": "Q4_K_M" if "Q4" in MODEL_VARIANT else "None", | |
"benchmarks": { | |
"LiveCodeBench_v5_Pass@1": "60.6%", | |
"Codeforces_Elo": 1936, | |
"Codeforces_Percentile": "95.3", | |
"HumanEval+_Accuracy": "92.6%" | |
} | |
} | |
async def generate_code(request: CodeRequest): | |
"""Generate code using the DeepCoder model""" | |
if not model_loaded: | |
raise HTTPException(status_code=503, detail="Model not loaded yet") | |
try: | |
# Tokenize input | |
inputs = tokenizer( | |
request.prompt, | |
return_tensors="pt", | |
truncation=True, | |
max_length=MAX_TOKENS - request.max_tokens | |
) | |
if DEVICE == "cuda": | |
inputs = {k: v.to(DEVICE) for k, v in inputs.items()} | |
# Generation parameters | |
generation_kwargs = { | |
"max_new_tokens": request.max_tokens, | |
"temperature": request.temperature, | |
"top_p": request.top_p, | |
"do_sample": True, | |
"pad_token_id": tokenizer.eos_token_id, | |
} | |
if request.stop_sequences: | |
generation_kwargs["stop_sequences"] = request.stop_sequences | |
# Generate | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, **generation_kwargs) | |
# Decode output | |
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:] | |
generated_code = tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
return CodeResponse( | |
generated_code=generated_code, | |
model_info={ | |
"model_name": MODEL_NAME, | |
"variant": MODEL_VARIANT, | |
"device": DEVICE | |
}, | |
generation_params={ | |
"temperature": request.temperature, | |
"top_p": request.top_p, | |
"max_tokens": request.max_tokens | |
} | |
) | |
except Exception as e: | |
logger.error(f"Generation error: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}") | |
async def chat_completion(request: CodeRequest): | |
"""Chat-style completion for code assistance""" | |
# Add system context for better code generation | |
system_prompt = """You are DeepCoder, an expert AI programming assistant. Generate high-quality, well-commented code that follows best practices.""" | |
full_prompt = f"{system_prompt}\n\nUser: {request.prompt}\n\nAssistant:" | |
# Create modified request with system prompt | |
modified_request = CodeRequest( | |
prompt=full_prompt, | |
temperature=request.temperature, | |
top_p=request.top_p, | |
max_tokens=request.max_tokens, | |
stop_sequences=request.stop_sequences | |
) | |
return await generate_code(modified_request) | |
if __name__ == "__main__": | |
uvicorn.run( | |
"app:app", | |
host="0.0.0.0", | |
port=8000, | |
reload=False, | |
log_level="info" | |
) | |
fastapi==0.104.1 | |
uvicorn[standard]==0.24.0 | |
torch>=2.0.0 | |
transformers>=4.35.0 | |
accelerate>=0.24.0 | |
bitsandbytes>=0.41.0 | |
huggingface_hub>=0.19.0 | |
pydantic>=2.5.0 | |
python-multipart==0.0.6 | |
jinja2>=3.1.0 | |
aiofiles>=23.0.0 | |
nvidia-ml-py3>=7.352.0 | |
psutil>=5.9.0 | |
requests>=2.31.0 | |
#!/usr/bin/env python3 | |
""" | |
Download script for DeepCoder model | |
Downloads and caches the model for faster container startup | |
""" | |
import os | |
import logging | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from huggingface_hub import snapshot_download | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
MODEL_NAME = os.getenv("MODEL_NAME", "ai/deepcoder-preview") | |
CACHE_DIR = os.getenv("HUGGINGFACE_HUB_CACHE", "/app/cache") | |
def download_model(): | |
"""Download the model and tokenizer""" | |
try: | |
logger.info(f"Downloading model: {MODEL_NAME}") | |
# Download model files | |
snapshot_download( | |
repo_id=MODEL_NAME, | |
cache_dir=CACHE_DIR, | |
resume_download=True | |
) | |
# Verify by loading tokenizer | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_NAME, | |
cache_dir=CACHE_DIR, | |
trust_remote_code=True | |
) | |
logger.info("Model downloaded successfully") | |
logger.info(f"Vocab size: {tokenizer.vocab_size}") | |
logger.info(f"Cache directory: {CACHE_DIR}") | |
return True | |
except Exception as e: | |
logger.error(f"Error downloading model: {str(e)}") | |
return False | |
if __name__ == "__main__": | |
success = download_model() | |
if not success: | |
exit(1) | |
logger.info("Download complete!") | |
events { | |
worker_connections 1024; | |
} | |
http { | |
upstream deepcoder_backend { | |
server deepcoder-api:8000; | |
} | |
# Rate limiting | |
limit_req_zone $binary_remote_addr zone=api:10m rate=10r/m; | |
server { | |
listen 80; | |
server_name localhost; | |
# Security headers | |
add_header X-Frame-Options DENY; | |
add_header X-Content-Type-Options nosniff; | |
add_header X-XSS-Protection "1; mode=block"; | |
# Increase client max body size for large code submissions | |
client_max_body_size 10M; | |
# Timeouts for long-running generation requests | |
proxy_connect_timeout 60s; | |
proxy_send_timeout 300s; | |
proxy_read_timeout 300s; | |
location / { | |
proxy_pass http://deepcoder_backend; | |
proxy_set_header Host $host; | |
proxy_set_header X-Real-IP $remote_addr; | |
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; | |
proxy_set_header X-Forwarded-Proto $scheme; | |
} | |
location /generate { | |
limit_req zone=api burst=5 nodelay; | |
proxy_pass http://deepcoder_backend; | |
proxy_set_header Host $host; | |
proxy_set_header X-Real-IP $remote_addr; | |
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; | |
proxy_set_header X-Forwarded-Proto $scheme; | |
} | |
location /health { | |
proxy_pass http://deepcoder_backend; | |
access_log off; | |
} | |
} | |
} | |
#!/bin/bash | |
# setup.sh - Setup script for DeepCoder deployment | |
set -e | |
echo "π DeepCoder Model Setup" | |
echo "========================" | |
# Create necessary directories | |
echo "π Creating directories..." | |
mkdir -p models cache logs ssl | |
# Set permissions | |
chmod 755 models cache logs | |
chmod 700 ssl | |
# Pull the DeepCoder model using Docker Model Runner | |
echo "π¦ Pulling DeepCoder model..." | |
if command -v docker &> /dev/null; then | |
# Assuming docker model runner is available | |
docker model pull ai/deepcoder-preview | |
else | |
echo "β οΈ Docker not found. Please install Docker first." | |
exit 1 | |
fi | |
# Check for GPU support | |
echo "π Checking GPU support..." | |
if command -v nvidia-smi &> /dev/null; then | |
echo "β NVIDIA GPU detected:" | |
nvidia-smi --query-gpu=gpu_name,memory.total --format=csv,noheader | |
# Check for Docker GPU support | |
if docker run --rm --gpus all nvidia/cuda:11.8-base nvidia-smi &> /dev/null; then | |
echo "β Docker GPU support verified" | |
export GPU_SUPPORT=true | |
else | |
echo "β οΈ Docker GPU support not available" | |
export GPU_SUPPORT=false | |
fi | |
else | |
echo "β οΈ No GPU detected. Running on CPU." | |
export GPU_SUPPORT=false | |
fi | |
# Build and start containers | |
echo "ποΈ Building Docker containers..." | |
docker-compose build | |
echo "π Starting services..." | |
if [ "$GPU_SUPPORT" = true ]; then | |
docker-compose up -d | |
else | |
# Remove GPU requirements for CPU-only deployment | |
sed 's/devices:/# devices:/g' docker-compose.yml | \ | |
sed 's/- driver: nvidia/# - driver: nvidia/g' | \ | |
sed 's/count: 1/# count: 1/g' | \ | |
sed 's/capabilities: \[gpu\]/# capabilities: [gpu]/g' > docker-compose-cpu.yml | |
docker-compose -f docker-compose-cpu.yml up -d | |
fi | |
# Wait for services to be ready | |
echo "β³ Waiting for services to start..." | |
sleep 30 | |
# Health check | |
echo "π₯ Performing health check..." | |
for i in {1..10}; do | |
if curl -f http://localhost:8000/health > /dev/null 2>&1; then | |
echo "β DeepCoder API is healthy!" | |
break | |
else | |
echo "β³ Waiting for API to be ready... (attempt $i/10)" | |
sleep 10 | |
fi | |
done | |
# Show status | |
echo "π Service Status:" | |
docker-compose ps | |
echo "" | |
echo "π DeepCoder setup complete!" | |
echo "API endpoint: http://localhost:8000" | |
echo "Health check: http://localhost:8000/health" | |
echo "Model info: http://localhost:8000/model/info" | |
echo "" | |
echo "To test the API:" | |
echo "curl -X POST http://localhost:8000/generate \\" | |
echo " -H 'Content-Type: application/json' \\" | |
echo " -d '{\"prompt\": \"def fibonacci(n):\", \"max_tokens\": 200}'" | |
########################################### | |
# deploy-hf.sh - Hugging Face Spaces deployment | |
########################################### | |
cat > deploy-hf.sh << 'EOL' | |
#!/bin/bash | |
# Deploy to Hugging Face Spaces | |
set -e | |
echo "π€ Deploying to Hugging Face Spaces" | |
echo "====================================" | |
# Check if git is configured | |
if ! git config user.email > /dev/null; then | |
echo "β οΈ Please configure git:" | |
echo "git config --global user.email 'your-email@example.com'" | |
echo "git config --global user.name 'Your Name'" | |
exit 1 | |
fi | |
# Check if HF_TOKEN is set | |
if [ -z "$HF_TOKEN" ]; then | |
echo "β οΈ Please set your Hugging Face token:" | |
echo "export HF_TOKEN=your_hf_token_here" | |
exit 1 | |
fi | |
SPACE_NAME=${1:-"deepcoder-api"} | |
HF_USERNAME=${2:-$(whoami)} | |
echo "Creating Space: $HF_USERNAME/$SPACE_NAME" | |
# Create Hugging Face Space files | |
cat > README.md << EOF | |
--- | |
title: DeepCoder API | |
emoji: π | |
colorFrom: blue | |
colorTo: green | |
sdk: docker | |
pinned: false | |
license: mit | |
--- | |
# DeepCoder API | |
High-performance code generation API powered by DeepCoder-14B model. | |
## Features | |
- π― 60.6% pass rate on LiveCodeBench v5 | |
- π 1936 Elo rating on Codeforces (95.3 percentile) | |
- π 92.6% accuracy on HumanEval+ | |
- β‘ 131K token context length | |
- π§ Optimized Q4_K_M quantization | |
## API Endpoints | |
- \`POST /generate\` - Generate code from prompts | |
- \`POST /chat\` - Chat-style code assistance | |
- \`GET /model/info\` - Model information | |
- \`GET /health\` - Health check | |
## Usage | |
\`\`\`bash | |
curl -X POST /generate \\ | |
-H 'Content-Type: application/json' \\ | |
-d '{"prompt": "def fibonacci(n):", "max_tokens": 200}' | |
\`\`\` | |
EOF | |
# Create Dockerfile for HF Spaces | |
cat > Dockerfile.hf << EOF | |
FROM python:3.11-slim | |
WORKDIR /app | |
RUN apt-get update && apt-get install -y curl git && rm -rf /var/lib/apt/lists/* | |
COPY requirements.txt . | |
RUN pip install --no-cache-dir -r requirements.txt | |
COPY . . | |
EXPOSE 7860 | |
CMD ["python", "-m", "uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"] | |
EOF | |
# Update app.py for HF Spaces (port 7860) | |
sed 's/port=8000/port=7860/g' app.py > app_hf.py | |
mv app_hf.py app.py | |
# Initialize git repo if not exists | |
if [ ! -d .git ]; then | |
git init | |
git lfs install | |
fi | |
# Track large model files with git LFS | |
echo "*.bin filter=lfs diff=lfs merge=lfs -text" >> .gitattributes | |
echo "*.safetensors filter=lfs diff=lfs merge=lfs -text" >> .gitattributes | |
# Add remote if not exists | |
if ! git remote get-url origin > /dev/null 2>&1; then | |
git remote add origin https://huggingface.co/spaces/$HF_USERNAME/$SPACE_NAME | |
fi | |
# Commit and push | |
git add . | |
git commit -m "Initial DeepCoder API deployment" || true | |
git push -u origin main | |
echo "β Deployed to: https://huggingface.co/spaces/$HF_USERNAME/$SPACE_NAME" | |
EOL | |
chmod +x deploy-hf.sh | |
echo "π Additional deployment script created: deploy-hf.sh" | |