Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from typing import List | |
from diffusers import AutoencoderKLWan, WanVACEPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
import gradio as gr | |
import tempfile | |
import spaces | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import random | |
from briarmbg import BriaRMBG | |
model_id = "Wan-AI/Wan2.1-VACE-14B-diffusers" | |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanVACEPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16).to("cuda") | |
# Initialize background removal model | |
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4").to("cuda", dtype=torch.float32) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0) | |
pipe.load_lora_weights( | |
"vrgamedevgirl84/Wan14BT2VFusioniX", | |
weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", | |
adapter_name="phantom" | |
) | |
# pipe.load_lora_weights( | |
# "vrgamedevgirl84/Wan14BT2VFusioniX", | |
# weight_name="OtherLoRa's/DetailEnhancerV1.safetensors", adapter_name="detailer" | |
# ) | |
# pipe.set_adapters(["phantom","detailer"], adapter_weights=[1, .9]) | |
# pipe.fuse_lora() | |
MOD_VALUE = 32 | |
DEFAULT_H_SLIDER_VALUE = 512 | |
DEFAULT_W_SLIDER_VALUE = 896 | |
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 | |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 | |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 16 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 81 | |
# Default prompts for different modes - Updated with new mode names | |
MODE_PROMPTS = { | |
"Reference": "the playful penguin picks up the green cat eye sunglasses and puts them on", | |
"First - Last Frame": "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective.", | |
"Random Transitions": "Various different characters appear and disappear in a fast transition video showcasting their unique features and personalities. The video is about showcasing different dance styles, with each character performing a distinct dance move. The background is a vibrant, colorful stage with dynamic lighting that changes with each dance style. The camera captures close-ups of the dancers' expressions and movements. Highly dynamic, fast-paced music video, with quick cuts and transitions between characters, cinematic, vibrant colors" | |
} | |
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" | |
def remove_alpha_channel(image: Image.Image) -> Image.Image: | |
""" | |
Remove alpha channel from PIL Image if it exists. | |
Args: | |
image (Image.Image): Input PIL image | |
Returns: | |
Image.Image: Image with alpha channel removed (RGB format) | |
""" | |
if image.mode in ('RGBA', 'LA'): | |
# Create a white background | |
background = Image.new('RGB', image.size, (255, 255, 255)) | |
# Paste the image onto the white background using alpha channel as mask | |
if image.mode == 'RGBA': | |
background.paste(image, mask=image.split()[-1]) # Use alpha channel as mask | |
else: # LA mode | |
background.paste(image.convert('RGB'), mask=image.split()[-1]) | |
return background | |
elif image.mode == 'P': | |
# Convert palette mode to RGB (some palette images have transparency) | |
if 'transparency' in image.info: | |
image = image.convert('RGBA') | |
background = Image.new('RGB', image.size, (255, 255, 255)) | |
background.paste(image, mask=image.split()[-1]) | |
return background | |
else: | |
return image.convert('RGB') | |
elif image.mode != 'RGB': | |
# Convert any other mode to RGB | |
return image.convert('RGB') | |
else: | |
# Already RGB, return as is | |
return image | |
def numpy2pytorch(imgs): | |
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0 | |
h = h.movedim(-1, 1) | |
return h | |
def pytorch2numpy(imgs, quant=True): | |
results = [] | |
for x in imgs: | |
y = x.movedim(0, -1) | |
if quant: | |
y = y * 127.5 + 127.5 | |
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) | |
else: | |
y = y * 0.5 + 0.5 | |
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32) | |
results.append(y) | |
return results | |
def resize_without_crop(image, target_width, target_height): | |
pil_image = Image.fromarray(image) | |
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) | |
return np.array(resized_image) | |
def run_rmbg(img, sigma=0.0): | |
""" | |
Remove background from image using BriaRMBG model. | |
Args: | |
img (np.ndarray): Input image as numpy array (H, W, C) | |
sigma (float): Noise parameter for blending | |
Returns: | |
tuple: (result_image, alpha_mask) where result_image is the image with background removed | |
""" | |
H, W, C = img.shape | |
assert C == 3 | |
k = (256.0 / float(H * W)) ** 0.5 | |
feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k))) | |
feed = numpy2pytorch([feed]).to(device="cuda", dtype=torch.float32) | |
alpha = rmbg(feed)[0][0] | |
alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear") | |
alpha = alpha.movedim(1, -1)[0] | |
alpha = alpha.detach().float().cpu().numpy().clip(0, 1) | |
result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha | |
return result.clip(0, 255).astype(np.uint8), alpha | |
def remove_background_from_image(image: Image.Image) -> Image.Image: | |
""" | |
Remove background from PIL Image using RMBG model. | |
Args: | |
image (Image.Image): Input PIL image | |
Returns: | |
Image.Image: Image with background removed (transparent background) | |
""" | |
# Convert PIL to numpy array | |
img_array = np.array(image) | |
# Remove background using RMBG | |
result_array, alpha_mask = run_rmbg(img_array) | |
# Convert back to PIL with alpha channel | |
result_image = Image.fromarray(result_array) | |
# Create RGBA image with alpha mask | |
if result_image.mode != 'RGBA': | |
result_image = result_image.convert('RGBA') | |
# Handle alpha mask dimensions and convert to PIL | |
# The alpha_mask might have extra dimensions, so squeeze and ensure 2D | |
alpha_mask_2d = np.squeeze(alpha_mask) | |
if alpha_mask_2d.ndim > 2: | |
# If still more than 2D, take the first channel | |
alpha_mask_2d = alpha_mask_2d[:, :, 0] if alpha_mask_2d.shape[-1] == 1 else alpha_mask_2d[:, :, 0] | |
# Convert to uint8 and create PIL Image without deprecated mode parameter | |
alpha_array = (alpha_mask_2d * 255).astype(np.uint8) | |
alpha_pil = Image.fromarray(alpha_array, 'L') | |
result_image.putalpha(alpha_pil) | |
return result_image | |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, | |
min_slider_h, max_slider_h, | |
min_slider_w, max_slider_w, | |
default_h, default_w): | |
orig_w, orig_h = pil_image.size | |
if orig_w <= 0 or orig_h <= 0: | |
return default_h, default_w | |
aspect_ratio = orig_h / orig_w | |
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) | |
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) | |
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) | |
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) | |
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) | |
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) | |
return new_h, new_w | |
def handle_gallery_upload_for_dims_wan(gallery_images, current_h_val, current_w_val): | |
if gallery_images is None or len(gallery_images) == 0: | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
try: | |
# Use the first image to calculate dimensions | |
first_image = gallery_images[0][0] | |
# Remove alpha channel before calculating dimensions | |
first_image = remove_alpha_channel(first_image) | |
new_h, new_w = _calculate_new_dimensions_wan( | |
first_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, | |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, | |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE | |
) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
gr.Warning("Error attempting to calculate new dimensions") | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
def update_prompt_from_mode(mode): | |
"""Update the prompt based on the selected mode""" | |
return MODE_PROMPTS.get(mode, "") | |
def prepare_video_and_mask_Ref2V(height: int, width: int, num_frames: int): | |
frames = [] | |
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays | |
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to | |
# match the original code. | |
frames.extend([Image.new("RGB", (width, height), (128, 128, 128))] * (num_frames)) | |
mask_white = Image.new("L", (width, height), 255) | |
mask = [mask_white] * (num_frames) | |
return frames, mask | |
def prepare_video_and_mask_FLF2V(first_img: Image.Image, last_img: Image.Image, height: int, width: int, num_frames: int): | |
# Remove alpha channels before processing | |
first_img = remove_alpha_channel(first_img) | |
last_img = remove_alpha_channel(last_img) | |
first_img = first_img.resize((width, height)) | |
last_img = last_img.resize((width, height)) | |
frames = [] | |
frames.append(first_img) | |
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays | |
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to | |
# match the original code. | |
frames.extend([Image.new("RGB", (width, height), (128, 128, 128))] * (num_frames - 2)) | |
frames.append(last_img) | |
mask_black = Image.new("L", (width, height), 0) | |
mask_white = Image.new("L", (width, height), 255) | |
mask = [mask_black, *[mask_white] * (num_frames - 2), mask_black] | |
return frames, mask | |
def calculate_random2v_frame_indices(num_images: int, num_frames: int) -> List[int]: | |
""" | |
Calculate evenly spaced frame indices for Random2V mode. | |
Args: | |
num_images (int): Number of input images | |
num_frames (int): Total number of frames in the video | |
Returns: | |
List[int]: Frame indices where images should be placed | |
""" | |
if num_images <= 0: | |
return [] | |
if num_images == 1: | |
# Single image goes in the middle | |
return [num_frames // 2] | |
if num_images >= num_frames: | |
# More images than frames, use every frame | |
return list(range(num_frames)) | |
# Calculate evenly spaced indices | |
# We want to distribute images across the full duration | |
indices = [] | |
step = (num_frames - 1) / (num_images - 1) | |
for i in range(num_images): | |
frame_idx = int(round(i * step)) | |
# Ensure we don't exceed num_frames - 1 | |
frame_idx = min(frame_idx, num_frames - 1) | |
indices.append(frame_idx) | |
# Remove duplicates while preserving order | |
seen = set() | |
unique_indices = [] | |
for idx in indices: | |
if idx not in seen: | |
seen.add(idx) | |
unique_indices.append(idx) | |
return unique_indices | |
def prepare_video_and_mask_Random2V(images: List[Image.Image], frame_indices: List[int], height: int, width: int, num_frames: int): | |
# Remove alpha channels from all images before processing | |
images = [remove_alpha_channel(img) for img in images] | |
images = [img.resize((width, height)) for img in images] | |
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays | |
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to | |
# match the original code. | |
frames = [Image.new("RGB", (width, height), (128, 128, 128))] * num_frames | |
mask_black = Image.new("L", (width, height), 0) | |
mask_white = Image.new("L", (width, height), 255) | |
mask = [mask_white] * num_frames | |
for img, idx in zip(images, frame_indices): | |
assert idx < num_frames, f"Frame index {idx} exceeds num_frames {num_frames}" | |
frames[idx] = img | |
mask[idx] = mask_black | |
return frames, mask | |
def get_duration(gallery_images, mode, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, | |
seed, randomize_seed, remove_bg, | |
progress): | |
# Add extra time if background removal is enabled | |
base_duration = 60 | |
if steps > 4 and duration_seconds > 2: | |
base_duration = 90 | |
elif steps > 4 or duration_seconds > 2: | |
base_duration = 75 | |
# Add extra time for background removal processing | |
if mode == "Reference" and remove_bg: # Updated to use new mode name | |
base_duration += 30 | |
return base_duration | |
def generate_video(gallery_images, mode, prompt, height, width, | |
negative_prompt=default_negative_prompt, duration_seconds = 2, | |
guidance_scale = 1, steps = 4, | |
seed = 42, randomize_seed = False, remove_bg = False, | |
progress=gr.Progress(track_tqdm=True)): | |
""" | |
Generate a video from gallery images using the selected mode. | |
Args: | |
gallery_images (list): List of PIL images from the gallery | |
mode (str): Processing mode - "Reference", "first - last frame", or "random transitions" | |
prompt (str): Text prompt describing the desired animation | |
height (int): Target height for the output video | |
width (int): Target width for the output video | |
negative_prompt (str): Negative prompt to avoid unwanted elements | |
duration_seconds (float): Duration of the generated video in seconds | |
guidance_scale (float): Controls adherence to the prompt | |
steps (int): Number of inference steps | |
seed (int): Random seed for reproducible results | |
randomize_seed (bool): Whether to use a random seed | |
remove_bg (bool): Whether to remove background from images (reference mode only) | |
progress (gr.Progress): Gradio progress tracker | |
Returns: | |
tuple: (video_path, current_seed) | |
""" | |
if gallery_images is None or len(gallery_images) == 0: | |
raise gr.Error("Please upload at least one image to the gallery.") | |
else: | |
# Process images: remove background if requested (reference mode only), then remove alpha channels | |
processed_images = [] | |
for img in gallery_images: | |
image = img[0] # Extract PIL image from gallery format | |
# Apply background removal only for reference mode if checkbox is checked | |
if mode == "Reference" and remove_bg: # Updated to use new mode name | |
image = remove_background_from_image(image) | |
# Always remove alpha channels to ensure RGB format | |
image = remove_alpha_channel(image) | |
processed_images.append(image) | |
gallery_images = processed_images | |
if mode == "First - Last Frame" and len(gallery_images) >= 2: # Updated mode name | |
gallery_images = gallery_images[:2] | |
elif mode == "First - Last Frame" and len(gallery_images) < 2: # Updated mode name | |
raise gr.Error("First - Last Frame mode requires at least 2 images, but only {} were supplied.".format(len(gallery_images))) | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
# Process images based on the selected mode | |
if mode == "First - Last Frame": # Updated mode name | |
frames, mask = prepare_video_and_mask_FLF2V( | |
first_img=gallery_images[0], | |
last_img=gallery_images[1], | |
height=target_h, | |
width=target_w, | |
num_frames=num_frames | |
) | |
reference_images = None | |
elif mode == "Reference": # Updated mode name | |
frames, mask = prepare_video_and_mask_Ref2V(height=target_h, width=target_w, num_frames=num_frames) | |
reference_images = gallery_images | |
else: # mode == "random transitions" # Updated mode name | |
# Calculate dynamic frame indices based on number of images and frames | |
frame_indices = calculate_random2v_frame_indices(len(gallery_images), num_frames) | |
frames, mask = prepare_video_and_mask_Random2V( | |
images=gallery_images, | |
frame_indices=frame_indices, | |
height=target_h, | |
width=target_w, | |
num_frames=num_frames | |
) | |
reference_images = None | |
with torch.inference_mode(): | |
output_frames_list = pipe( | |
video=frames, | |
mask=mask, | |
reference_images=reference_images, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=target_h, | |
width=target_w, | |
num_frames=num_frames, | |
guidance_scale=float(guidance_scale), | |
num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
return video_path, current_seed | |
control_modes = """ | |
**3 Control Modes Available:** | |
- **Reference** Generate a video incorporating elements from input reference images | |
- **First - Last Frame** Generate a video using first and last frame conditioning defined by input images | |
- **Random Transitions** Generate a video with intermediate transitions between multiple input images | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown("# Fast 6 step Wan 2.1 VACE (14B)") | |
gr.Markdown("Using [**Wan2.1-VACE-14B**](https://huggingface.co/Wan-AI/Wan2.1-VACE-14B-diffusers) + [**👻FusionX Phantom LoRA**](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX) by [**vrgamedevgirl84**](https://huggingface.co/vrgamedevgirl84) with **🧨diffusers**, for fast video generation with multiple conditions 🏎️") | |
gr.Markdown(f"{control_modes}") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
# Radio button for mode selection with updated names | |
mode_radio = gr.Radio( | |
choices=["Reference", "First - Last Frame", "Random Transitions"], | |
value="reference", | |
label="Control Mode", | |
#info="Reference: upload reference images to take elements from | First - Last Frame: upload 1st and last frames| Random Transitions: upload images to be used as frame anchors" | |
) | |
# Gallery component for multiple image upload | |
gallery_component = gr.Gallery( | |
label="upload 1 or more images", | |
show_label=True, | |
elem_id="gallery", | |
columns=3, | |
rows=2, | |
object_fit="contain", | |
height="auto", | |
type="pil", | |
allow_preview=True | |
) | |
# Background removal checkbox moved here - right beneath control modes | |
remove_bg_checkbox = gr.Checkbox( | |
label="Remove Background", | |
value=False, | |
info="removes background from input images, enable to prevent unwanted background elements in the generated video" | |
) | |
prompt_input = gr.Textbox(label="Prompt", value=MODE_PROMPTS["Reference"]) | |
duration_seconds_input = gr.Slider( | |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), | |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), | |
step=0.1, | |
value=2.3, | |
label="Duration (seconds)", | |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) | |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
with gr.Row(): | |
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})") | |
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})") | |
steps_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Inference Steps") | |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.5, value=1.0, label="Guidance Scale", visible=False) | |
generate_button = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) | |
# Function to update checkbox visibility based on mode | |
def update_bg_removal_visibility(mode): | |
return gr.update(visible=(mode == "reference")) # Updated to use new mode name | |
# Update prompt when mode changes | |
mode_radio.change( | |
fn=update_prompt_from_mode, | |
inputs=[mode_radio], | |
outputs=[prompt_input] | |
) | |
# Update background removal checkbox visibility when mode changes | |
mode_radio.change( | |
fn=update_bg_removal_visibility, | |
inputs=[mode_radio], | |
outputs=[remove_bg_checkbox] | |
) | |
# Update dimensions when gallery changes | |
gallery_component.change( | |
fn=handle_gallery_upload_for_dims_wan, | |
inputs=[gallery_component, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
ui_inputs = [ | |
gallery_component, mode_radio, prompt_input, height_input, width_input, | |
negative_prompt_input, duration_seconds_input, | |
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox, remove_bg_checkbox | |
] | |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) | |
gr.Examples( | |
examples=[ | |
[["reachy.png", "sunglasses.jpg", "gpu_hat.png"], "reference", "the cute robot is wearing the sunglasses and the hat that reads 'GPU poor', and moves around playfully", 480, 832], | |
[["flf2v_input_first_frame.png", "flf2v_input_last_frame.png"], "first - last frame", "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective.", 512, 512], | |
], | |
inputs=[gallery_component, mode_radio, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" | |
) | |
if __name__ == "__main__": | |
demo.queue().launch(mcp_server=True) |