Spaces:
Sleeping
Sleeping
File size: 925 Bytes
33d6349 29ed669 ad03cdd 37ee4dc 3906d80 29ed669 ad03cdd 37ee4dc 29ed669 acc2d02 29ed669 37ee4dc ad03cdd acc2d02 29ed669 acc2d02 29ed669 acc2d02 92d7df2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
import torch
from torchvision.transforms import ToTensor
from torchvision.models import resnet50
from PIL import Image
import torch.nn as nn
# Load your PyTorch model
model = resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, 2)
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')))
classes = ['bom', 'ruim']
# Define the function for image classification
def classify_image(image):
image_tensor = ToTensor()(image).unsqueeze(0)
# Perform inference using your PyTorch model
with torch.no_grad():
model.eval()
outputs = model(image_tensor)
_, predicted = torch.max(outputs.data, 1)
return classes[predicted.item()]
# Define the Gradio interface
inputs = gr.Image()
outputs = gr.Label(num_top_classes=1)
interface = gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs)
interface.launch(debug=True) |