Tcid / summary_page.py
manueldeprada's picture
Upload folder using huggingface_hub
d87fc8a verified
import matplotlib.pyplot as plt
import pandas as pd
from data import extract_model_data
# Layout parameters
COLUMNS = 3
# Derived constants
COLUMN_WIDTH = 100 / COLUMNS # Each column takes 25% of width
BAR_WIDTH = COLUMN_WIDTH * 0.8 # 80% of column width for bars
BAR_MARGIN = COLUMN_WIDTH * 0.1 # 10% margin on each side
# Figure dimensions
FIGURE_WIDTH = 22 # Wider to accommodate columns and legend
MAX_HEIGHT = 14 # Maximum height in inches
MIN_HEIGHT_PER_ROW = 2.8
FIGURE_PADDING = 1
# Bar styling
BAR_HEIGHT_RATIO = 0.22 # Bar height as ratio of vertical spacing
VERTICAL_SPACING_RATIO = 0.2 # Base vertical position ratio
AMD_BAR_OFFSET = 0.25 # AMD bar offset ratio
NVIDIA_BAR_OFFSET = 0.54 # NVIDIA bar offset ratio
# Colors
COLORS = {
'passed': '#4CAF50',
'failed': '#E53E3E',
'skipped': '#FFD54F',
'error': '#8B0000',
'empty': "#5B5B5B"
}
# Font styling
MODEL_NAME_FONT_SIZE = 16
LABEL_FONT_SIZE = 14
LABEL_OFFSET = 1 # Distance of label from bar
FAILURE_RATE_FONT_SIZE = 28
def calculate_overall_failure_rates(df: pd.DataFrame, available_models: list[str]) -> tuple[float, float]:
"""Calculate overall failure rates for AMD and NVIDIA across all models."""
if df.empty or not available_models:
return 0.0, 0.0
total_amd_tests = 0
total_amd_failures = 0
total_nvidia_tests = 0
total_nvidia_failures = 0
for model_name in available_models:
if model_name not in df.index:
continue
row = df.loc[model_name]
amd_stats, nvidia_stats = extract_model_data(row)[:2]
# AMD totals
amd_total = amd_stats['passed'] + amd_stats['failed'] + amd_stats['error']
if amd_total > 0:
total_amd_tests += amd_total
total_amd_failures += amd_stats['failed'] + amd_stats['error']
# NVIDIA totals
nvidia_total = nvidia_stats['passed'] + nvidia_stats['failed'] + nvidia_stats['error']
if nvidia_total > 0:
total_nvidia_tests += nvidia_total
total_nvidia_failures += nvidia_stats['failed'] + nvidia_stats['error']
amd_failure_rate = (total_amd_failures / total_amd_tests * 100) if total_amd_tests > 0 else 0.0
nvidia_failure_rate = (total_nvidia_failures / total_nvidia_tests * 100) if total_nvidia_tests > 0 else 0.0
return amd_failure_rate, nvidia_failure_rate
def draw_text_and_bar(
label: str,
stats: dict[str, int],
y_bar: float,
column_left_position: float,
bar_height: float,
ax: plt.Axes,
) -> None:
"""Draw a horizontal bar chart for given stats and its label on the left."""
# Text
label_x = column_left_position - LABEL_OFFSET
failures_present = any(stats[category] > 0 for category in ['failed', 'error'])
if failures_present:
props = dict(boxstyle='round', facecolor=COLORS['failed'], alpha=0.35)
else:
props = dict(alpha=0)
ax.text(
label_x, y_bar, label, ha='right', va='center', color='#CCCCCC', fontsize=LABEL_FONT_SIZE,
fontfamily='monospace', fontweight='normal', bbox=props
)
# Bar
total = sum(stats.values())
if total > 0:
left = column_left_position
for category in ['passed', 'failed', 'skipped', 'error']:
if stats[category] > 0:
width = stats[category] / total * BAR_WIDTH
ax.barh(y_bar, width, left=left, height=bar_height, color=COLORS[category], alpha=0.9)
left += width
else:
ax.barh(y_bar, BAR_WIDTH, left=column_left_position, height=bar_height, color=COLORS['empty'], alpha=0.9)
def create_summary_page(df: pd.DataFrame, available_models: list[str]) -> plt.Figure:
"""Create a summary page with model names and both AMD/NVIDIA test stats bars."""
if df.empty:
fig, ax = plt.subplots(figsize=(16, 8), facecolor='#000000')
ax.set_facecolor('#000000')
ax.text(0.5, 0.5, 'No data available',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=20, color='#888888',
fontfamily='monospace', weight='normal')
ax.axis('off')
return fig
# Calculate overall failure rates
amd_failure_rate, nvidia_failure_rate = calculate_overall_failure_rates(df, available_models)
# Calculate dimensions for N-column layout
model_count = len(available_models)
rows = (model_count + COLUMNS - 1) // COLUMNS # Ceiling division
# Figure dimensions - wider for columns, height based on rows
height_per_row = min(MIN_HEIGHT_PER_ROW, MAX_HEIGHT / max(rows, 1))
figure_height = min(MAX_HEIGHT, rows * height_per_row + FIGURE_PADDING)
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, figure_height), facecolor='#000000')
ax.set_facecolor('#000000')
# Add overall failure rates at the top as a proper title
failure_text = f"Overall Failure Rates: AMD {amd_failure_rate:.1f}% | NVIDIA {nvidia_failure_rate:.1f}%"
ax.text(50, -1.25, failure_text, ha='center', va='top',
color='#FFFFFF', fontsize=FAILURE_RATE_FONT_SIZE,
fontfamily='monospace', fontweight='bold')
visible_model_count = 0
max_y = 0
for i, model_name in enumerate(available_models):
if model_name not in df.index:
continue
row = df.loc[model_name]
# Extract and process model data
amd_stats, nvidia_stats = extract_model_data(row)[:2]
# Calculate position in 4-column grid
col = visible_model_count % COLUMNS
row = visible_model_count // COLUMNS
# Calculate horizontal position for this column
col_left = col * COLUMN_WIDTH + BAR_MARGIN
col_center = col * COLUMN_WIDTH + COLUMN_WIDTH / 2
# Calculate vertical position for this row - start from top
vertical_spacing = height_per_row
y_base = (VERTICAL_SPACING_RATIO + row) * vertical_spacing
y_model_name = y_base # Model name above AMD bar
y_amd_bar = y_base + vertical_spacing * AMD_BAR_OFFSET # AMD bar
y_nvidia_bar = y_base + vertical_spacing * NVIDIA_BAR_OFFSET # NVIDIA bar
max_y = max(max_y, y_nvidia_bar + vertical_spacing * 0.3)
# Model name centered above the bars in this column
ax.text(col_center, y_model_name, model_name.lower(),
ha='center', va='center', color='#FFFFFF',
fontsize=MODEL_NAME_FONT_SIZE, fontfamily='monospace', fontweight='bold')
# AMD label and bar in this column
bar_height = min(0.4, vertical_spacing * BAR_HEIGHT_RATIO)
# Draw AMD bar
draw_text_and_bar("amd", amd_stats, y_amd_bar, col_left, bar_height, ax)
# Draw NVIDIA bar
draw_text_and_bar("nvidia", nvidia_stats, y_nvidia_bar, col_left, bar_height, ax)
# Increment counter for next visible model
visible_model_count += 1
# Add legend horizontally in bottom right corner
patch_height = 0.3
patch_width = 3
legend_start_x = 68.7
legend_y = max_y + 1
legend_spacing = 10
legend_font_size = 15
# Add failure rate explanation text on the left
# explanation_text = "Failure rate = failed / (passed + failed)"
# ax.text(0, legend_y, explanation_text,
# ha='left', va='bottom', color='#CCCCCC',
# fontsize=legend_font_size, fontfamily='monospace', style='italic')
# Legend entries
legend_items = [
('passed', 'Passed'),
('failed', 'Failed'),
('skipped', 'Skipped'),
]
for i, (status, label) in enumerate(legend_items):
x_pos = legend_start_x + i * legend_spacing
# Small colored square
ax.add_patch(plt.Rectangle((x_pos - 0.6, legend_y), patch_width, -patch_height,
facecolor=COLORS[status], alpha=0.9))
# Status label
ax.text(x_pos + patch_width, legend_y, label,
ha='left', va='bottom', color='#CCCCCC',
fontsize=legend_font_size, fontfamily='monospace')
# Style the axes to be completely invisible and span full width
ax.set_xlim(-5, 105) # Slightly wider to accommodate labels
ax.set_ylim(0, max_y + 1) # Add some padding at the top for title
ax.set_xlabel('')
ax.set_ylabel('')
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xticks([])
ax.set_yticks([])
ax.yaxis.set_inverted(True)
# Remove all margins to make figure stick to top
plt.tight_layout()
return fig