Spaces:
Running
Running
import matplotlib.pyplot as plt | |
import pandas as pd | |
from data import extract_model_data | |
# Layout parameters | |
COLUMNS = 3 | |
# Derived constants | |
COLUMN_WIDTH = 100 / COLUMNS # Each column takes 25% of width | |
BAR_WIDTH = COLUMN_WIDTH * 0.8 # 80% of column width for bars | |
BAR_MARGIN = COLUMN_WIDTH * 0.1 # 10% margin on each side | |
# Figure dimensions | |
FIGURE_WIDTH = 22 # Wider to accommodate columns and legend | |
MAX_HEIGHT = 14 # Maximum height in inches | |
MIN_HEIGHT_PER_ROW = 2.8 | |
FIGURE_PADDING = 1 | |
# Bar styling | |
BAR_HEIGHT_RATIO = 0.22 # Bar height as ratio of vertical spacing | |
VERTICAL_SPACING_RATIO = 0.2 # Base vertical position ratio | |
AMD_BAR_OFFSET = 0.25 # AMD bar offset ratio | |
NVIDIA_BAR_OFFSET = 0.54 # NVIDIA bar offset ratio | |
# Colors | |
COLORS = { | |
'passed': '#4CAF50', | |
'failed': '#E53E3E', | |
'skipped': '#FFD54F', | |
'error': '#8B0000', | |
'empty': "#5B5B5B" | |
} | |
# Font styling | |
MODEL_NAME_FONT_SIZE = 16 | |
LABEL_FONT_SIZE = 14 | |
LABEL_OFFSET = 1 # Distance of label from bar | |
FAILURE_RATE_FONT_SIZE = 28 | |
def calculate_overall_failure_rates(df: pd.DataFrame, available_models: list[str]) -> tuple[float, float]: | |
"""Calculate overall failure rates for AMD and NVIDIA across all models.""" | |
if df.empty or not available_models: | |
return 0.0, 0.0 | |
total_amd_tests = 0 | |
total_amd_failures = 0 | |
total_nvidia_tests = 0 | |
total_nvidia_failures = 0 | |
for model_name in available_models: | |
if model_name not in df.index: | |
continue | |
row = df.loc[model_name] | |
amd_stats, nvidia_stats = extract_model_data(row)[:2] | |
# AMD totals | |
amd_total = amd_stats['passed'] + amd_stats['failed'] + amd_stats['error'] | |
if amd_total > 0: | |
total_amd_tests += amd_total | |
total_amd_failures += amd_stats['failed'] + amd_stats['error'] | |
# NVIDIA totals | |
nvidia_total = nvidia_stats['passed'] + nvidia_stats['failed'] + nvidia_stats['error'] | |
if nvidia_total > 0: | |
total_nvidia_tests += nvidia_total | |
total_nvidia_failures += nvidia_stats['failed'] + nvidia_stats['error'] | |
amd_failure_rate = (total_amd_failures / total_amd_tests * 100) if total_amd_tests > 0 else 0.0 | |
nvidia_failure_rate = (total_nvidia_failures / total_nvidia_tests * 100) if total_nvidia_tests > 0 else 0.0 | |
return amd_failure_rate, nvidia_failure_rate | |
def draw_text_and_bar( | |
label: str, | |
stats: dict[str, int], | |
y_bar: float, | |
column_left_position: float, | |
bar_height: float, | |
ax: plt.Axes, | |
) -> None: | |
"""Draw a horizontal bar chart for given stats and its label on the left.""" | |
# Text | |
label_x = column_left_position - LABEL_OFFSET | |
failures_present = any(stats[category] > 0 for category in ['failed', 'error']) | |
if failures_present: | |
props = dict(boxstyle='round', facecolor=COLORS['failed'], alpha=0.35) | |
else: | |
props = dict(alpha=0) | |
ax.text( | |
label_x, y_bar, label, ha='right', va='center', color='#CCCCCC', fontsize=LABEL_FONT_SIZE, | |
fontfamily='monospace', fontweight='normal', bbox=props | |
) | |
# Bar | |
total = sum(stats.values()) | |
if total > 0: | |
left = column_left_position | |
for category in ['passed', 'failed', 'skipped', 'error']: | |
if stats[category] > 0: | |
width = stats[category] / total * BAR_WIDTH | |
ax.barh(y_bar, width, left=left, height=bar_height, color=COLORS[category], alpha=0.9) | |
left += width | |
else: | |
ax.barh(y_bar, BAR_WIDTH, left=column_left_position, height=bar_height, color=COLORS['empty'], alpha=0.9) | |
def create_summary_page(df: pd.DataFrame, available_models: list[str]) -> plt.Figure: | |
"""Create a summary page with model names and both AMD/NVIDIA test stats bars.""" | |
if df.empty: | |
fig, ax = plt.subplots(figsize=(16, 8), facecolor='#000000') | |
ax.set_facecolor('#000000') | |
ax.text(0.5, 0.5, 'No data available', | |
horizontalalignment='center', verticalalignment='center', | |
transform=ax.transAxes, fontsize=20, color='#888888', | |
fontfamily='monospace', weight='normal') | |
ax.axis('off') | |
return fig | |
# Calculate overall failure rates | |
amd_failure_rate, nvidia_failure_rate = calculate_overall_failure_rates(df, available_models) | |
# Calculate dimensions for N-column layout | |
model_count = len(available_models) | |
rows = (model_count + COLUMNS - 1) // COLUMNS # Ceiling division | |
# Figure dimensions - wider for columns, height based on rows | |
height_per_row = min(MIN_HEIGHT_PER_ROW, MAX_HEIGHT / max(rows, 1)) | |
figure_height = min(MAX_HEIGHT, rows * height_per_row + FIGURE_PADDING) | |
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, figure_height), facecolor='#000000') | |
ax.set_facecolor('#000000') | |
# Add overall failure rates at the top as a proper title | |
failure_text = f"Overall Failure Rates: AMD {amd_failure_rate:.1f}% | NVIDIA {nvidia_failure_rate:.1f}%" | |
ax.text(50, -1.25, failure_text, ha='center', va='top', | |
color='#FFFFFF', fontsize=FAILURE_RATE_FONT_SIZE, | |
fontfamily='monospace', fontweight='bold') | |
visible_model_count = 0 | |
max_y = 0 | |
for i, model_name in enumerate(available_models): | |
if model_name not in df.index: | |
continue | |
row = df.loc[model_name] | |
# Extract and process model data | |
amd_stats, nvidia_stats = extract_model_data(row)[:2] | |
# Calculate position in 4-column grid | |
col = visible_model_count % COLUMNS | |
row = visible_model_count // COLUMNS | |
# Calculate horizontal position for this column | |
col_left = col * COLUMN_WIDTH + BAR_MARGIN | |
col_center = col * COLUMN_WIDTH + COLUMN_WIDTH / 2 | |
# Calculate vertical position for this row - start from top | |
vertical_spacing = height_per_row | |
y_base = (VERTICAL_SPACING_RATIO + row) * vertical_spacing | |
y_model_name = y_base # Model name above AMD bar | |
y_amd_bar = y_base + vertical_spacing * AMD_BAR_OFFSET # AMD bar | |
y_nvidia_bar = y_base + vertical_spacing * NVIDIA_BAR_OFFSET # NVIDIA bar | |
max_y = max(max_y, y_nvidia_bar + vertical_spacing * 0.3) | |
# Model name centered above the bars in this column | |
ax.text(col_center, y_model_name, model_name.lower(), | |
ha='center', va='center', color='#FFFFFF', | |
fontsize=MODEL_NAME_FONT_SIZE, fontfamily='monospace', fontweight='bold') | |
# AMD label and bar in this column | |
bar_height = min(0.4, vertical_spacing * BAR_HEIGHT_RATIO) | |
# Draw AMD bar | |
draw_text_and_bar("amd", amd_stats, y_amd_bar, col_left, bar_height, ax) | |
# Draw NVIDIA bar | |
draw_text_and_bar("nvidia", nvidia_stats, y_nvidia_bar, col_left, bar_height, ax) | |
# Increment counter for next visible model | |
visible_model_count += 1 | |
# Add legend horizontally in bottom right corner | |
patch_height = 0.3 | |
patch_width = 3 | |
legend_start_x = 68.7 | |
legend_y = max_y + 1 | |
legend_spacing = 10 | |
legend_font_size = 15 | |
# Add failure rate explanation text on the left | |
# explanation_text = "Failure rate = failed / (passed + failed)" | |
# ax.text(0, legend_y, explanation_text, | |
# ha='left', va='bottom', color='#CCCCCC', | |
# fontsize=legend_font_size, fontfamily='monospace', style='italic') | |
# Legend entries | |
legend_items = [ | |
('passed', 'Passed'), | |
('failed', 'Failed'), | |
('skipped', 'Skipped'), | |
] | |
for i, (status, label) in enumerate(legend_items): | |
x_pos = legend_start_x + i * legend_spacing | |
# Small colored square | |
ax.add_patch(plt.Rectangle((x_pos - 0.6, legend_y), patch_width, -patch_height, | |
facecolor=COLORS[status], alpha=0.9)) | |
# Status label | |
ax.text(x_pos + patch_width, legend_y, label, | |
ha='left', va='bottom', color='#CCCCCC', | |
fontsize=legend_font_size, fontfamily='monospace') | |
# Style the axes to be completely invisible and span full width | |
ax.set_xlim(-5, 105) # Slightly wider to accommodate labels | |
ax.set_ylim(0, max_y + 1) # Add some padding at the top for title | |
ax.set_xlabel('') | |
ax.set_ylabel('') | |
ax.spines['bottom'].set_visible(False) | |
ax.spines['left'].set_visible(False) | |
ax.spines['top'].set_visible(False) | |
ax.spines['right'].set_visible(False) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.yaxis.set_inverted(True) | |
# Remove all margins to make figure stick to top | |
plt.tight_layout() | |
return fig | |