Spaces:
Runtime error
Runtime error
title: Wav2Vec2 XLS-R 1B Portuguese ASR | |
emoji: ๐๏ธ | |
colorFrom: blue | |
colorTo: yellow | |
sdk: gradio | |
sdk_version: "4.44.1" | |
app_file: app.py | |
pinned: false | |
license: apache-2.0 | |
# Fine-tuned XLS-R 1B model for speech recognition in Portuguese | |
Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Portuguese using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [CORAA](https://github.com/nilc-nlp/CORAA), [Multilingual TEDx](http://www.openslr.org/100), and [Multilingual LibriSpeech](https://www.openslr.org/94/). | |
When using this model, make sure that your speech input is sampled at 16kHz. | |
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) | |
## Usage | |
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: | |
```python | |
from huggingsound import SpeechRecognitionModel | |
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-portuguese") | |
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] | |
transcriptions = model.transcribe(audio_paths) | |
``` | |
Writing your own inference script: | |
```python | |
import torch | |
import librosa | |
from datasets import load_dataset | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
LANG_ID = "pt" | |
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-portuguese" | |
SAMPLES = 10 | |
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") | |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) | |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) | |
# Preprocessing the datasets. | |
# We need to read the audio files as arrays | |
def speech_file_to_array_fn(batch): | |
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) | |
batch["speech"] = speech_array | |
batch["sentence"] = batch["sentence"].upper() | |
return batch | |
test_dataset = test_dataset.map(speech_file_to_array_fn) | |
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
predicted_sentences = processor.batch_decode(predicted_ids) | |
``` | |
## Evaluation Commands | |
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` | |
```bash | |
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset mozilla-foundation/common_voice_8_0 --config pt --split test | |
``` | |
2. To evaluate on `speech-recognition-community-v2/dev_data` | |
```bash | |
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0 | |
``` | |
## Citation | |
If you want to cite this model you can use this: | |
```bibtex | |
@misc{grosman2021xlsr-1b-portuguese, | |
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {P}ortuguese}, | |
author={Grosman, Jonatas}, | |
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese}}, | |
year={2022} | |
} | |
``` |