Spaces:
Running
Running
File size: 13,567 Bytes
926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f ce78bc9 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f ce78bc9 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f ce78bc9 926e69f b62cbdd 926e69f b62cbdd 926e69f b62cbdd 926e69f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
# /// script
# requires-python = ">=3.13"
# dependencies = [
# "duckdb==1.2.2",
# "marimo",
# "polars==1.29.0",
# "pyarrow==20.0.0",
# "sqlglot==26.16.4",
# ]
# ///
import marimo
__generated_with = "0.13.11"
app = marimo.App(width="medium", app_title="Window Functions")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Window Functions
_By [Henry Harbeck](https://github.com/henryharbeck)._
In this notebook, you'll learn how to perform different types of window functions in Polars.
You'll work with partitions, ordering and Polars' available "mapping strategies".
We'll use a dataset with a few days of paid and organic digital revenue data.
"""
)
return
@app.cell
def _():
from datetime import date
import polars as pl
dates = pl.date_range(date(2025, 2, 1), date(2025, 2, 5), eager=True)
df = pl.DataFrame(
{
"date": pl.concat([dates, dates]).sort(),
"channel": ["Paid", "Organic"] * 5,
"revenue": [6000, 2000, 5200, 4500, 4200, 5900, 3500, 5000, 4800, 4800],
}
)
df
return date, df, pl
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## What is a window function?
A window function performs a calculation across a set of rows that are related to the current row.
They allow you to perform aggregations and other calculations within a group without collapsing
the number of rows (opposed to a group by aggregation, which does collapse the number of rows). Typically the result of a
window function is assigned back to rows within the group, but Polars also offers additional alternatives.
Window functions can be used by specifying the [`over`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.over.html)
method on an expression.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Partitions
Partitions are the "group by" columns. We will have one "window" of data per unique value in the partition column(s), to
which the function will be applied.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Partitioning by a single column
Let's get the total revenue per date...
"""
)
return
@app.cell
def _(df, pl):
daily_revenue = pl.col("revenue").sum().over("date")
df.with_columns(daily_revenue.alias("daily_revenue"))
return (daily_revenue,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""And then see what percentage of the daily total was Paid and what percentage was Organic.""")
return
@app.cell
def _(daily_revenue, df, pl):
df.with_columns(daily_revenue_pct=(pl.col("revenue") / daily_revenue))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Let's now calculate the maximum revenue, cumulative revenue, rank the revenue and calculate the day-on-day change,
all partitioned (split) by channel.
"""
)
return
@app.cell
def _(df, pl):
df.with_columns(
maximum_revenue=pl.col("revenue").max().over("channel"),
cumulative_revenue=pl.col("revenue").cum_sum().over("channel"),
revenue_rank=pl.col("revenue").rank(descending=True).over("channel"),
day_on_day_change=pl.col("revenue").diff().over("channel"),
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Note that aggregation functions such as `sum` and `max` have their value applied back to each row in the partition
(group). Non-aggregate functions such as `cum_sum`, `rank` and `diff` can produce different values per row, but
still only consider rows within their partition.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Partitioning by multiple columns
We can also partition by multiple columns.
Let's add a column to see whether it is a weekday (business day), then get the maximum revenue by that and
the channel.
"""
)
return
@app.cell
def _(df, pl):
(
df.with_columns(
is_weekday=pl.col("date").dt.is_business_day(),
).with_columns(
max_rev_by_channel_and_weekday=pl.col("revenue").max().over("is_weekday", "channel"),
)
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Partitioning by expressions
Polars also lets you partition by expressions without needing to create them as columns first.
So, we could re-write the previous window function as...
"""
)
return
@app.cell
def _(df, pl):
df.with_columns(
max_rev_by_channel_and_weekday=pl.col("revenue")
.max()
.over((pl.col("date").dt.is_business_day()), "channel")
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Window functions fit into Polars' composable [expressions API](https://docs.pola.rs/user-guide/concepts/expressions-and-contexts/#expressions),
so can be combined with all [aggregation methods](https://docs.pola.rs/api/python/stable/reference/expressions/aggregation.html)
and methods that consider more than 1 row (e.g., `cum_sum`, `rank` and `diff` as we just saw).
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Ordering
The `order_by` parameter controls how to order the data within the window. The function is applied to the data in this
order.
Up until this point, we have been letting Polars do the window function calculations based on the order of the rows in the
DataFrame. There can be times where we would like order of the calculation and the order of the output itself to differ.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
### Ordering in a window function
Let's say we want the DataFrame ordered by day of week, but we still want cumulative revenue and the first revenue observation, both
ordered by date and partitioned by channel...
"""
)
return
@app.cell
def _(df, pl):
df_sorted = (
# Monday = 1, Sunday = 7
df.sort(pl.col("date").dt.weekday())
# Show the weekday for transparency
.with_columns(pl.col("date").dt.to_string("%a").alias("weekday"))
)
df_sorted.select(
"date",
"weekday",
"channel",
"revenue",
pl.col("revenue").cum_sum().over("channel", order_by="date").alias("cumulative_revenue"),
pl.col("revenue").first().over("channel", order_by="date").alias("first_revenue"),
)
return (df_sorted,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Note about window function ordering compared to SQL
It is worth noting that traditionally in SQL, many more functions require an `ORDER BY` within `OVER` than in
equivalent functions in Polars.
For example, an SQL `RANK()` expression like...
"""
)
return
@app.cell
def _(df, mo):
_df = mo.sql(
f"""
SELECT
date,
channel,
revenue,
RANK() OVER (PARTITION BY channel ORDER BY revenue DESC) AS revenue_rank
FROM df
-- re-sort the output back to the original order for ease of comparison
ORDER BY date, channel DESC
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
...does not require an `order_by` in Polars as the column and the function are already bound (including with the
`descending=True` argument).
"""
)
return
@app.cell
def _(df, pl):
df.select(
"date",
"channel",
"revenue",
revenue_rank=pl.col("revenue").rank(descending=True).over("channel"),
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Descending order
We can also order in descending order by passing `descending=True`...
"""
)
return
@app.cell
def _(df_sorted, pl):
(
df_sorted.select(
"date",
"weekday",
"channel",
"revenue",
pl.col("revenue").cum_sum().over("channel", order_by="date").alias("cumulative_revenue"),
pl.col("revenue").first().over("channel", order_by="date").alias("first_revenue"),
pl.col("revenue")
.first()
.over("channel", order_by="date", descending=True)
.alias("last_revenue"),
# Or, alternatively
pl.col("revenue").last().over("channel", order_by="date").alias("also_last_revenue"),
)
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## Mapping Strategies
Mapping Strategies control how Polars maps the result of the window function back to the original DataFrame
Generally (by default) the result of a window function is assigned back to rows within the group. Through Polars' mapping
strategies, we will explore other possibilities.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
### Group to rows
"group_to_rows" is the default mapping strategy and assigns the result of the window function back to the rows in the
window.
"""
)
return
@app.cell
def _(df, pl):
df.with_columns(
cumulative_revenue=pl.col("revenue").cum_sum().over("channel", mapping_strategy="group_to_rows")
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
### Join
The "join" mapping strategy aggregates the resulting values in a list and repeats the list for all rows in the group.
"""
)
return
@app.cell
def _(df, pl):
df.with_columns(
cumulative_revenue=pl.col("revenue").cum_sum().over("channel", mapping_strategy="join")
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Explode
The "explode" mapping strategy is similar to "group_to_rows", but is typically faster and does not preserve the order of
rows. Due to this, it requires sorting columns (including those not in the window function) for the result to make sense.
It should also only be used in a `select` context and not `with_columns`.
The result of "explode" is similar to a `group_by` followed by an `agg` followed by an `explode`.
"""
)
return
@app.cell
def _(df, pl):
df.select(
pl.all().over("channel", order_by="date", mapping_strategy="explode"),
cumulative_revenue=pl.col("revenue")
.cum_sum()
.over("channel", order_by="date", mapping_strategy="explode"),
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Note the modified order of the rows in the output, (but data is the same)...""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""## Other tips and tricks""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Reusing a window
In SQL there is a `WINDOW` keyword, which easily allows the re-use of the same window specification across expressions
without needing to repeat it. In Polars, this can be achieved by using `dict` unpacking to pass arguments to `over`.
"""
)
return
@app.cell
def _(df_sorted, pl):
window = {
"partition_by": "date",
"order_by": "date",
"mapping_strategy": "group_to_rows",
}
df_sorted.with_columns(
pct_daily_revenue=(pl.col("revenue") / pl.col("revenue").sum()).over(**window),
highest_revenue_channel=pl.col("channel").top_k_by("revenue", k=1).first().over(**window),
daily_revenue_rank=pl.col("revenue").rank().over(**window),
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Rolling Windows
Much like in SQL, Polars also gives you the ability to do rolling window computations. In Polars, the rolling calculation
is also aware of temporal data, making it easy to express if the data is not contiguous (i.e., observations are missing).
Let's look at an example of that now by filtering out one day of our data and then calculating both a 3-day and 3-row
max revenue split by channel...
"""
)
return
@app.cell
def _(date, df, pl):
(
df.filter(pl.col("date") != date(2025, 2, 2))
.with_columns(
# "3d" -> 3 days
rev_3_day_max=pl.col("revenue").rolling_max_by("date", "3d", min_samples=1).over("channel"),
rev_3_row_max=pl.col("revenue").rolling_max(3, min_samples=1).over("channel"),
)
# sort to make the output a little easier to analyze
.sort("channel", "date")
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Notice the difference in the 2nd last row...""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We hope you enjoyed this notebook, demonstrating window functions in Polars!""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Additional References
- [Polars User guide - Window functions](https://docs.pola.rs/user-guide/expressions/window-functions/)
- [Polars over method API reference](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.over.html)
- [PostgreSQL window function documentation](https://www.postgresql.org/docs/current/tutorial-window.html)
"""
)
return
@app.cell(hide_code=True)
def _():
import marimo as mo
return (mo,)
if __name__ == "__main__":
app.run()
|