Spaces:
Running
Running
import os | |
import re | |
import json | |
from datetime import datetime | |
from typing import List, Dict, Any, Optional, Literal | |
from fastapi import FastAPI, Request, BackgroundTasks | |
from fastapi.middleware.cors import CORSMiddleware | |
import gradio as gr | |
import uvicorn | |
from pydantic import BaseModel | |
from huggingface_hub.inference._mcp.agent import Agent | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Configuration | |
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "your-webhook-secret") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium") | |
# Use a valid provider literal from the documentation | |
DEFAULT_PROVIDER: Literal["hf-inference"] = "hf-inference" | |
HF_PROVIDER = os.getenv("HF_PROVIDER", DEFAULT_PROVIDER) | |
# Simple storage for processed tag operations | |
tag_operations_store: List[Dict[str, Any]] = [] | |
# Agent instance | |
agent_instance: Optional[Agent] = None | |
# Common ML tags that we recognize for auto-tagging | |
RECOGNIZED_TAGS = { | |
"pytorch", | |
"tensorflow", | |
"jax", | |
"transformers", | |
"diffusers", | |
"text-generation", | |
"text-classification", | |
"question-answering", | |
"text-to-image", | |
"image-classification", | |
"object-detection", | |
"conversational", | |
"fill-mask", | |
"token-classification", | |
"translation", | |
"summarization", | |
"feature-extraction", | |
"sentence-similarity", | |
"zero-shot-classification", | |
"image-to-text", | |
"automatic-speech-recognition", | |
"audio-classification", | |
"voice-activity-detection", | |
"depth-estimation", | |
"image-segmentation", | |
"video-classification", | |
"reinforcement-learning", | |
"tabular-classification", | |
"tabular-regression", | |
"time-series-forecasting", | |
"graph-ml", | |
"robotics", | |
"computer-vision", | |
"nlp", | |
"cv", | |
"multimodal", | |
} | |
class WebhookEvent(BaseModel): | |
event: Dict[str, str] | |
comment: Dict[str, Any] | |
discussion: Dict[str, Any] | |
repo: Dict[str, str] | |
app = FastAPI(title="HF Tagging Bot") | |
app.add_middleware(CORSMiddleware, allow_origins=["*"]) | |
async def get_agent(): | |
"""Get or create Agent instance""" | |
global agent_instance | |
if agent_instance is None and HF_TOKEN: | |
agent_instance = Agent( | |
model=HF_MODEL, | |
provider=DEFAULT_PROVIDER, | |
api_key=HF_TOKEN, | |
servers=[ | |
{ | |
"type": "stdio", | |
"config": { | |
"command": "python", | |
"args": ["mcp_server.py"], | |
"cwd": ".", # Ensure correct working directory | |
"env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {}, | |
}, | |
} | |
], | |
) | |
await agent_instance.load_tools() | |
return agent_instance | |
def extract_tags_from_text(text: str) -> List[str]: | |
"""Extract potential tags from discussion text""" | |
text_lower = text.lower() | |
# Look for explicit tag mentions like "tag: pytorch" or "#pytorch" | |
explicit_tags = [] | |
# Pattern 1: "tag: something" or "tags: something" | |
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)" | |
matches = re.findall(tag_pattern, text_lower) | |
for match in matches: | |
# Split by comma and clean up | |
tags = [tag.strip() for tag in match.split(",")] | |
explicit_tags.extend(tags) | |
# Pattern 2: "#hashtag" style | |
hashtag_pattern = r"#([a-zA-Z0-9-_]+)" | |
hashtag_matches = re.findall(hashtag_pattern, text_lower) | |
explicit_tags.extend(hashtag_matches) | |
# Pattern 3: Look for recognized tags mentioned in natural text | |
mentioned_tags = [] | |
for tag in RECOGNIZED_TAGS: | |
if tag in text_lower: | |
mentioned_tags.append(tag) | |
# Combine and deduplicate | |
all_tags = list(set(explicit_tags + mentioned_tags)) | |
# Filter to only include recognized tags or explicitly mentioned ones | |
valid_tags = [] | |
for tag in all_tags: | |
if tag in RECOGNIZED_TAGS or tag in explicit_tags: | |
valid_tags.append(tag) | |
return valid_tags | |
async def process_webhook_comment(webhook_data: Dict[str, Any]): | |
"""Process webhook to detect and add tags""" | |
comment_content = webhook_data["comment"]["content"] | |
discussion_title = webhook_data["discussion"]["title"] | |
repo_name = webhook_data["repo"]["name"] | |
discussion_num = webhook_data["discussion"]["num"] | |
# Author is an object with "id" field | |
comment_author = webhook_data["comment"]["author"].get("id", "unknown") | |
# Extract potential tags from the comment and discussion title | |
comment_tags = extract_tags_from_text(comment_content) | |
title_tags = extract_tags_from_text(discussion_title) | |
all_tags = list(set(comment_tags + title_tags)) | |
result_messages = [] | |
if not all_tags: | |
result_messages.append("No recognizable tags found in the discussion.") | |
else: | |
agent = await get_agent() | |
if not agent: | |
msg = "Error: Agent not configured (missing HF_TOKEN)" | |
result_messages.append(msg) | |
else: | |
# Process each tag | |
for tag in all_tags: | |
try: | |
# Get response from agent | |
responses = [] | |
prompt = ( | |
f"Add the tag '{tag}' to repository {repo_name} " | |
"using add_new_tag" | |
) | |
async for item in agent.run(prompt): | |
# Just collect the response content | |
responses.append(str(item)) | |
response_text = " ".join(responses) if responses else "Completed" | |
# Try to parse JSON from response if possible | |
try: | |
# Look for JSON in the response | |
json_found = False | |
for response_part in responses: | |
response_str = str(response_part) | |
if "{" in response_str and "}" in response_str: | |
# Try to extract JSON from the response | |
start_idx = response_str.find("{") | |
end_idx = response_str.rfind("}") + 1 | |
json_str = response_str[start_idx:end_idx] | |
try: | |
json_response = json.loads(json_str) | |
status = json_response.get("status") | |
if status == "success": | |
pr_url = json_response.get("pr_url", "") | |
msg = f"Tag '{tag}': PR created - {pr_url}" | |
elif status == "already_exists": | |
msg = f"Tag '{tag}': Already exists" | |
else: | |
tag_msg = json_response.get( | |
"message", "Processed" | |
) | |
msg = f"Tag '{tag}': {tag_msg}" | |
json_found = True | |
break | |
except json.JSONDecodeError: | |
continue | |
if not json_found: | |
# If no JSON found, use the response as is | |
msg = f"Tag '{tag}': {response_text}" | |
except Exception: | |
msg = f"Tag '{tag}': Response parse error - {response_text}" | |
result_messages.append(msg) | |
except Exception as e: | |
error_msg = f"Error processing tag '{tag}': {str(e)}" | |
result_messages.append(error_msg) | |
# Store the interaction | |
base_url = "https://huggingface.co" | |
discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}" | |
interaction = { | |
"timestamp": datetime.now().isoformat(), | |
"repo": repo_name, | |
"discussion_title": discussion_title, | |
"discussion_num": discussion_num, | |
"discussion_url": discussion_url, | |
"original_comment": comment_content, | |
"comment_author": comment_author, | |
"detected_tags": all_tags, | |
"results": result_messages, | |
} | |
tag_operations_store.append(interaction) | |
return " | ".join(result_messages) | |
async def webhook_handler(request: Request, background_tasks: BackgroundTasks): | |
"""Handle HF Hub webhooks""" | |
webhook_secret = request.headers.get("X-Webhook-Secret") | |
if webhook_secret != WEBHOOK_SECRET: | |
print("β Invalid webhook secret") | |
return {"error": "Invalid webhook secret"} | |
payload = await request.json() | |
print(f"π₯ Received webhook payload: {json.dumps(payload, indent=2)}") | |
event = payload.get("event", {}) | |
scope = event.get("scope") | |
action = event.get("action") | |
print(f"π Event details - scope: {scope}, action: {action}") | |
# Check if this is a discussion comment creation | |
scope_check = scope == "discussion" | |
action_check = action == "create" | |
print(f"β scope_check: {scope_check}") | |
print(f"β action_check: {action_check}") | |
if scope_check and action_check: | |
# Verify we have the required fields | |
required_fields = ["comment", "discussion", "repo"] | |
missing_fields = [field for field in required_fields if field not in payload] | |
if missing_fields: | |
error_msg = f"Missing required fields: {missing_fields}" | |
print(f"β {error_msg}") | |
return {"error": error_msg} | |
print(f"π Processing webhook for repo: {payload['repo']['name']}") | |
background_tasks.add_task(process_webhook_comment, payload) | |
return {"status": "processing"} | |
print(f"βοΈ Ignoring webhook - scope: {scope}, action: {action}") | |
return {"status": "ignored"} | |
async def simulate_webhook( | |
repo_name: str, discussion_title: str, comment_content: str | |
) -> str: | |
"""Simulate webhook for testing""" | |
if not all([repo_name, discussion_title, comment_content]): | |
return "Please fill in all fields." | |
mock_payload = { | |
"event": {"action": "create", "scope": "discussion"}, | |
"comment": { | |
"content": comment_content, | |
"author": {"id": "test-user-id"}, | |
"id": "mock-comment-id", | |
"hidden": False, | |
}, | |
"discussion": { | |
"title": discussion_title, | |
"num": len(tag_operations_store) + 1, | |
"id": "mock-discussion-id", | |
"status": "open", | |
"isPullRequest": False, | |
}, | |
"repo": { | |
"name": repo_name, | |
"type": "model", | |
"private": False, | |
}, | |
} | |
response = await process_webhook_comment(mock_payload) | |
return f"β Processed! Results: {response}" | |
def create_gradio_app(): | |
"""Create Gradio interface""" | |
with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π·οΈ HF Tagging Bot Dashboard") | |
gr.Markdown("*Automatically adds tags to models when mentioned in discussions*") | |
gr.Markdown(""" | |
## How it works: | |
- Monitors HuggingFace Hub discussions | |
- Detects tag mentions in comments (e.g., "tag: pytorch", | |
"#transformers") | |
- Automatically adds recognized tags to the model repository | |
- Supports common ML tags like: pytorch, tensorflow, | |
text-generation, etc. | |
""") | |
with gr.Column(): | |
sim_repo = gr.Textbox( | |
label="Repository", | |
value="burtenshaw/play-mcp-repo-bot", | |
placeholder="username/model-name", | |
) | |
sim_title = gr.Textbox( | |
label="Discussion Title", | |
value="Add pytorch tag", | |
placeholder="Discussion title", | |
) | |
sim_comment = gr.Textbox( | |
label="Comment", | |
lines=3, | |
value="This model should have tags: pytorch, text-generation", | |
placeholder="Comment mentioning tags...", | |
) | |
sim_btn = gr.Button("π·οΈ Test Tag Detection") | |
with gr.Column(): | |
sim_result = gr.Textbox(label="Result", lines=8) | |
sim_btn.click( | |
fn=simulate_webhook, | |
inputs=[sim_repo, sim_title, sim_comment], | |
outputs=sim_result, | |
) | |
gr.Markdown(f""" | |
## Recognized Tags: | |
{", ".join(sorted(RECOGNIZED_TAGS))} | |
""") | |
return demo | |
# Mount Gradio app | |
gradio_app = create_gradio_app() | |
app = gr.mount_gradio_app(app, gradio_app, path="/gradio") | |
if __name__ == "__main__": | |
print("π Starting HF Tagging Bot...") | |
print("π Dashboard: http://localhost:7860/gradio") | |
print("π Webhook: http://localhost:7860/webhook") | |
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True) | |