Spaces:
Running
Running
File size: 13,107 Bytes
cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba d0a5416 cf9a1ba 49da546 cf9a1ba 49da546 d0a5416 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba 49da546 d0a5416 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba d0a5416 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 14270af cf9a1ba 49da546 c902a3f 784acd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import os
import re
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Literal
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import gradio as gr
import uvicorn
from pydantic import BaseModel
from huggingface_hub.inference._mcp.agent import Agent
from dotenv import load_dotenv
load_dotenv()
# Configuration
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "your-webhook-secret")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium")
# Use a valid provider literal from the documentation
DEFAULT_PROVIDER: Literal["hf-inference"] = "hf-inference"
HF_PROVIDER = os.getenv("HF_PROVIDER", DEFAULT_PROVIDER)
# Simple storage for processed tag operations
tag_operations_store: List[Dict[str, Any]] = []
# Agent instance
agent_instance: Optional[Agent] = None
# Common ML tags that we recognize for auto-tagging
RECOGNIZED_TAGS = {
"pytorch",
"tensorflow",
"jax",
"transformers",
"diffusers",
"text-generation",
"text-classification",
"question-answering",
"text-to-image",
"image-classification",
"object-detection",
"conversational",
"fill-mask",
"token-classification",
"translation",
"summarization",
"feature-extraction",
"sentence-similarity",
"zero-shot-classification",
"image-to-text",
"automatic-speech-recognition",
"audio-classification",
"voice-activity-detection",
"depth-estimation",
"image-segmentation",
"video-classification",
"reinforcement-learning",
"tabular-classification",
"tabular-regression",
"time-series-forecasting",
"graph-ml",
"robotics",
"computer-vision",
"nlp",
"cv",
"multimodal",
}
class WebhookEvent(BaseModel):
event: Dict[str, str]
comment: Dict[str, Any]
discussion: Dict[str, Any]
repo: Dict[str, str]
app = FastAPI(title="HF Tagging Bot")
app.add_middleware(CORSMiddleware, allow_origins=["*"])
async def get_agent():
"""Get or create Agent instance"""
global agent_instance
if agent_instance is None and HF_TOKEN:
agent_instance = Agent(
model=HF_MODEL,
provider=DEFAULT_PROVIDER,
api_key=HF_TOKEN,
servers=[
{
"type": "stdio",
"config": {
"command": "python",
"args": ["mcp_server.py"],
"cwd": ".", # Ensure correct working directory
"env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {},
},
}
],
)
await agent_instance.load_tools()
return agent_instance
def extract_tags_from_text(text: str) -> List[str]:
"""Extract potential tags from discussion text"""
text_lower = text.lower()
# Look for explicit tag mentions like "tag: pytorch" or "#pytorch"
explicit_tags = []
# Pattern 1: "tag: something" or "tags: something"
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
matches = re.findall(tag_pattern, text_lower)
for match in matches:
# Split by comma and clean up
tags = [tag.strip() for tag in match.split(",")]
explicit_tags.extend(tags)
# Pattern 2: "#hashtag" style
hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
hashtag_matches = re.findall(hashtag_pattern, text_lower)
explicit_tags.extend(hashtag_matches)
# Pattern 3: Look for recognized tags mentioned in natural text
mentioned_tags = []
for tag in RECOGNIZED_TAGS:
if tag in text_lower:
mentioned_tags.append(tag)
# Combine and deduplicate
all_tags = list(set(explicit_tags + mentioned_tags))
# Filter to only include recognized tags or explicitly mentioned ones
valid_tags = []
for tag in all_tags:
if tag in RECOGNIZED_TAGS or tag in explicit_tags:
valid_tags.append(tag)
return valid_tags
async def process_webhook_comment(webhook_data: Dict[str, Any]):
"""Process webhook to detect and add tags"""
comment_content = webhook_data["comment"]["content"]
discussion_title = webhook_data["discussion"]["title"]
repo_name = webhook_data["repo"]["name"]
discussion_num = webhook_data["discussion"]["num"]
# Author is an object with "id" field
comment_author = webhook_data["comment"]["author"].get("id", "unknown")
# Extract potential tags from the comment and discussion title
comment_tags = extract_tags_from_text(comment_content)
title_tags = extract_tags_from_text(discussion_title)
all_tags = list(set(comment_tags + title_tags))
result_messages = []
if not all_tags:
result_messages.append("No recognizable tags found in the discussion.")
else:
agent = await get_agent()
if not agent:
msg = "Error: Agent not configured (missing HF_TOKEN)"
result_messages.append(msg)
else:
# Process each tag
for tag in all_tags:
try:
# Get response from agent
responses = []
prompt = (
f"Add the tag '{tag}' to repository {repo_name} "
"using add_new_tag"
)
async for item in agent.run(prompt):
# Just collect the response content
responses.append(str(item))
response_text = " ".join(responses) if responses else "Completed"
# Try to parse JSON from response if possible
try:
# Look for JSON in the response
json_found = False
for response_part in responses:
response_str = str(response_part)
if "{" in response_str and "}" in response_str:
# Try to extract JSON from the response
start_idx = response_str.find("{")
end_idx = response_str.rfind("}") + 1
json_str = response_str[start_idx:end_idx]
try:
json_response = json.loads(json_str)
status = json_response.get("status")
if status == "success":
pr_url = json_response.get("pr_url", "")
msg = f"Tag '{tag}': PR created - {pr_url}"
elif status == "already_exists":
msg = f"Tag '{tag}': Already exists"
else:
tag_msg = json_response.get(
"message", "Processed"
)
msg = f"Tag '{tag}': {tag_msg}"
json_found = True
break
except json.JSONDecodeError:
continue
if not json_found:
# If no JSON found, use the response as is
msg = f"Tag '{tag}': {response_text}"
except Exception:
msg = f"Tag '{tag}': Response parse error - {response_text}"
result_messages.append(msg)
except Exception as e:
error_msg = f"Error processing tag '{tag}': {str(e)}"
result_messages.append(error_msg)
# Store the interaction
base_url = "https://huggingface.co"
discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}"
interaction = {
"timestamp": datetime.now().isoformat(),
"repo": repo_name,
"discussion_title": discussion_title,
"discussion_num": discussion_num,
"discussion_url": discussion_url,
"original_comment": comment_content,
"comment_author": comment_author,
"detected_tags": all_tags,
"results": result_messages,
}
tag_operations_store.append(interaction)
return " | ".join(result_messages)
@app.post("/webhook")
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
"""Handle HF Hub webhooks"""
webhook_secret = request.headers.get("X-Webhook-Secret")
if webhook_secret != WEBHOOK_SECRET:
print("β Invalid webhook secret")
return {"error": "Invalid webhook secret"}
payload = await request.json()
print(f"π₯ Received webhook payload: {json.dumps(payload, indent=2)}")
event = payload.get("event", {})
scope = event.get("scope")
action = event.get("action")
print(f"π Event details - scope: {scope}, action: {action}")
# Check if this is a discussion comment creation
scope_check = scope == "discussion"
action_check = action == "create"
print(f"β
scope_check: {scope_check}")
print(f"β
action_check: {action_check}")
if scope_check and action_check:
# Verify we have the required fields
required_fields = ["comment", "discussion", "repo"]
missing_fields = [field for field in required_fields if field not in payload]
if missing_fields:
error_msg = f"Missing required fields: {missing_fields}"
print(f"β {error_msg}")
return {"error": error_msg}
print(f"π Processing webhook for repo: {payload['repo']['name']}")
background_tasks.add_task(process_webhook_comment, payload)
return {"status": "processing"}
print(f"βοΈ Ignoring webhook - scope: {scope}, action: {action}")
return {"status": "ignored"}
async def simulate_webhook(
repo_name: str, discussion_title: str, comment_content: str
) -> str:
"""Simulate webhook for testing"""
if not all([repo_name, discussion_title, comment_content]):
return "Please fill in all fields."
mock_payload = {
"event": {"action": "create", "scope": "discussion"},
"comment": {
"content": comment_content,
"author": {"id": "test-user-id"},
"id": "mock-comment-id",
"hidden": False,
},
"discussion": {
"title": discussion_title,
"num": len(tag_operations_store) + 1,
"id": "mock-discussion-id",
"status": "open",
"isPullRequest": False,
},
"repo": {
"name": repo_name,
"type": "model",
"private": False,
},
}
response = await process_webhook_comment(mock_payload)
return f"β
Processed! Results: {response}"
def create_gradio_app():
"""Create Gradio interface"""
with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π·οΈ HF Tagging Bot Dashboard")
gr.Markdown("*Automatically adds tags to models when mentioned in discussions*")
gr.Markdown("""
## How it works:
- Monitors HuggingFace Hub discussions
- Detects tag mentions in comments (e.g., "tag: pytorch",
"#transformers")
- Automatically adds recognized tags to the model repository
- Supports common ML tags like: pytorch, tensorflow,
text-generation, etc.
""")
with gr.Column():
sim_repo = gr.Textbox(
label="Repository",
value="burtenshaw/play-mcp-repo-bot",
placeholder="username/model-name",
)
sim_title = gr.Textbox(
label="Discussion Title",
value="Add pytorch tag",
placeholder="Discussion title",
)
sim_comment = gr.Textbox(
label="Comment",
lines=3,
value="This model should have tags: pytorch, text-generation",
placeholder="Comment mentioning tags...",
)
sim_btn = gr.Button("π·οΈ Test Tag Detection")
with gr.Column():
sim_result = gr.Textbox(label="Result", lines=8)
sim_btn.click(
fn=simulate_webhook,
inputs=[sim_repo, sim_title, sim_comment],
outputs=sim_result,
)
gr.Markdown(f"""
## Recognized Tags:
{", ".join(sorted(RECOGNIZED_TAGS))}
""")
return demo
# Mount Gradio app
gradio_app = create_gradio_app()
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
if __name__ == "__main__":
print("π Starting HF Tagging Bot...")
print("π Dashboard: http://localhost:7860/gradio")
print("π Webhook: http://localhost:7860/webhook")
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|