latin-vulgate / app.py
wjbmattingly's picture
adding gradio api endpoint
81863ea verified
import gradio as gr
import weaviate
from weaviate.auth import Auth
from sentence_transformers import SentenceTransformer
from weaviate.classes.query import MetadataQuery
from weaviate.collections.classes.filters import Filter
from typing import List, Dict, Any
import os
from dotenv import load_dotenv
import pandas as pd
import re
from functools import lru_cache
# Load environment variables
load_dotenv()
# Validate environment variables
WEAVIATE_URL = os.getenv("WEAVIATE_URL")
WEAVIATE_API_KEY = os.getenv("WEAVIATE_API_KEY")
COLLECTION_NAME = os.getenv("COLLECTION_NAME")
if not all([WEAVIATE_URL, WEAVIATE_API_KEY, COLLECTION_NAME]):
raise ValueError(
"Missing required environment variables. Please ensure the following are set:\n"
"WEAVIATE_URL\n"
"WEAVIATE_API_KEY\n"
"COLLECTION_NAME"
)
# Initialize the model
model = SentenceTransformer('sentence-transformers/LaBSE')
# Book mappings
VULGATE_BOOKS = {
"Genesis": "Gn", "Exodus": "Ex", "Leviticus": "Lv", "Numbers": "Nm",
"Deuteronomy": "Dt", "Joshua": "Jos", "Judges": "Jdc", "Ruth": "Rt",
"1 Samuel": "1Rg", "2 Samuel": "2Rg", "1 Kings": "3Rg", "2 Kings": "4Rg",
"1 Chronicles": "1Par", "2 Chronicles": "2Par", "Ezra": "Esr",
"Nehemiah": "Neh", "Tobit": "Tob", "Judith": "Jdt", "Esther": "Est",
"1 Maccabees": "1Mcc", "2 Maccabees": "2Mcc", "Job": "Job", "Psalms": "Ps",
"Proverbs": "Pr", "Ecclesiastes": "Ecl", "Song of Solomon": "Ct",
"Wisdom": "Sap", "Sirach": "Sir", "Isaiah": "Is", "Jeremiah": "Jr",
"Lamentations": "Lam", "Baruch": "Bar", "Ezekiel": "Ez", "Daniel": "Dn",
"Hosea": "Os", "Joel": "Joel", "Amos": "Am", "Obadiah": "Abd",
"Jonah": "Jon", "Micah": "Mch", "Nahum": "Nah", "Habakkuk": "Hab",
"Zephaniah": "Soph", "Haggai": "Agg", "Zechariah": "Zach",
"Malachi": "Mal", "Matthew": "Mt", "Mark": "Mc", "Luke": "Lc",
"John": "Jo", "Acts": "Act", "Romans": "Rom", "1 Corinthians": "1Cor",
"2 Corinthians": "2Cor", "Galatians": "Gal", "Ephesians": "Eph",
"Philippians": "Phlp", "Colossians": "Col", "1 Thessalonians": "1Thes",
"2 Thessalonians": "2Thes", "1 Timothy": "1Tim", "2 Timothy": "2Tim",
"Titus": "Tit", "Philemon": "Phlm", "Hebrews": "Hbr", "James": "Jac",
"1 Peter": "1Ptr", "2 Peter": "2Ptr", "1 John": "1Jo", "2 John": "2Jo",
"3 John": "3Jo", "Jude": "Jud", "Revelation": "Apc"
}
@lru_cache(maxsize=1)
def load_vulgate_csv():
df = pd.read_csv("data/clem_vulgate.csv")
# Expect columns: book, chapter, verse, text
return df
def highlight_matching_words(text: str, query: str) -> str:
if not query.strip():
return text
query_words = set(re.findall(r'\b\w+\b', query.lower()))
if not query_words:
return text
partial_pattern = re.compile(r'(' + '|'.join(re.escape(w) for w in query_words) + r')', re.IGNORECASE)
tokens = re.findall(r'\w+|\W+', text)
highlighted = []
for token in tokens:
token_lc = token.lower()
if token_lc in query_words:
highlighted.append(f'<b>{token}</b>')
elif token.strip() and token.isalpha() and any(w in token_lc and w != token_lc for w in query_words):
def bold_sub(m):
return f'<em>{m.group(0)}</em>'
highlighted.append(partial_pattern.sub(bold_sub, token))
else:
highlighted.append(token)
return ''.join(highlighted)
def find_similar(query: str, books: List[str], limit: int = 50, search_method: str = "vector") -> List[Dict[str, Any]]:
try:
client = weaviate.connect_to_weaviate_cloud(
cluster_url=WEAVIATE_URL,
auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
)
try:
vulgate = client.collections.get(COLLECTION_NAME)
filter_condition = None
if books:
selected_books = [VULGATE_BOOKS[book] for book in books]
filter_condition = Filter.by_property("book").contains_any(selected_books)
# Always encode the query vector since we need it for both vector and hybrid search
query_vector = model.encode([query])[0]
if search_method == "vector":
response = vulgate.query.near_vector(
near_vector=query_vector,
limit=limit,
return_metadata=MetadataQuery(distance=True),
filters=filter_condition
)
elif search_method == "bm25":
response = vulgate.query.bm25(
query=query,
limit=limit,
filters=filter_condition
)
else: # hybrid
response = vulgate.query.hybrid(
query=query,
vector=query_vector,
limit=limit,
filters=filter_condition
)
results = []
for obj in response.objects:
highlighted_text = highlight_matching_words(obj.properties["text"], query)
# Handle different types of scores
similarity = 1.0 # default value
if hasattr(obj.metadata, 'distance') and obj.metadata.distance is not None:
similarity = 1 - obj.metadata.distance
elif hasattr(obj.metadata, 'score') and obj.metadata.score is not None:
similarity = obj.metadata.score
results.append({
"Reference": f"{obj.properties['book']} {obj.properties['chapter']}:{obj.properties['verse']}",
"Book": obj.properties["book"],
"Chapter": obj.properties["chapter"],
"Verse": obj.properties["verse"],
"Text": highlighted_text,
"RawText": obj.properties["text"],
"Similarity": round(similarity, 3)
})
return results
finally:
client.close()
except Exception as e:
return [{"Error": str(e)}]
def format_results_html(results: List[Dict[str, Any]]) -> str:
if not results:
return "<div>No results found.</div>"
if "Error" in results[0]:
return f'<div style="color:red">Error: {results[0]["Error"]}</div>'
html = [
'<table border="1">',
'<thead><tr>'
'<th>Reference</th><th>Text</th><th>Similarity</th><th>Book</th><th>Chapter</th><th>Verse</th>'
'</tr></thead><tbody>'
]
for r in results:
html.append(f'<tr>'
f'<td>{r["Reference"]}</td>'
f'<td>{r["Text"]}</td>'
f'<td>{r["Similarity"]}</td>'
f'<td>{r["Book"]}</td>'
f'<td>{r["Chapter"]}</td>'
f'<td>{r["Verse"]}</td>'
f'</tr>')
html.append('</tbody></table>')
return ''.join(html)
def search(query: str, books: List[str], limit: int, search_method: str) -> str:
if not query.strip():
return "<div>Please enter a search query.</div>"
results = find_similar(query, books, limit, search_method)
return format_results_html(results)
with gr.Blocks(title="Latin Vulgate Verse Similarity Search", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Latin Vulgate Verse Similarity Search
Search for similar verses in the Latin Vulgate Bible using semantic similarity.
<br>Words matching your query will be highlighted (exact matches and partial matches).
""")
with gr.Row():
query = gr.Textbox(
label="Search Query",
placeholder="Enter your search query...",
lines=2,
scale=3
)
with gr.Row():
with gr.Column(scale=2):
book_select = gr.Dropdown(
choices=list(VULGATE_BOOKS.keys()),
label="Select Books (Optional)",
multiselect=True
)
with gr.Row():
with gr.Column(scale=1):
search_method = gr.Radio(
choices=["vector", "bm25", "hybrid"],
label="Search Method",
value="vector"
)
with gr.Column(scale=1):
limit = gr.Slider(
minimum=1,
maximum=50,
value=20,
step=1,
label="Number of results"
)
with gr.Row():
search_btn = gr.Button("Search", variant="primary")
output = gr.HTML(label="Results")
search_btn.click(
fn=search,
inputs=[query, book_select, limit, search_method],
outputs=output,
api_name="predict"
)
query.submit(
fn=search,
inputs=[query, book_select, limit, search_method],
outputs=output,
api_name=False # Disable API for submit to avoid conflicts
)
if __name__ == "__main__":
demo.launch(
show_api=True,
share=False
)