Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer | |
import gradio as gr | |
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto" | |
) | |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
def generate_response(message, history, system_prompt, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_prompt}] | |
for user_msg, bot_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
streamer=streamer | |
) | |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return output_text.split(system_prompt)[-1].strip() | |
chat = gr.ChatInterface( | |
fn=generate_response, | |
additional_inputs=[ | |
gr.Textbox(label="System Prompt", value="Eres una mentora empática y reflexiva, especializada en acompañar a empleados en su camino hacia el bienestar laboral."), | |
gr.Slider(label="Max tokens", minimum=64, maximum=1024, value=512), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=1.5, value=0.7), | |
gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.95), | |
], | |
) | |
if __name__ == "__main__": | |
chat.launch() | |