File size: 48,908 Bytes
a4d9a11
 
 
 
 
1c41bb9
a4d9a11
 
 
 
 
1c41bb9
 
a4d9a11
 
 
1c41bb9
a4d9a11
 
 
 
 
 
 
 
3903b53
 
a4d9a11
de2fdbb
a4d9a11
 
 
 
 
 
 
a48cea9
a4d9a11
 
 
 
 
 
1c41bb9
a4d9a11
 
 
 
1c22261
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c41bb9
a4d9a11
 
 
 
 
1c41bb9
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a48cea9
a4d9a11
 
 
 
 
 
 
 
 
 
 
271c342
a4d9a11
 
 
 
271c342
a4d9a11
 
 
 
 
 
 
 
271c342
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c41bb9
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a48cea9
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a48cea9
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed24a71
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed24a71
a4d9a11
 
 
 
ed24a71
a4d9a11
 
 
 
ed24a71
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c41bb9
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7374a3
a4d9a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a48cea9
a4d9a11
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import mimetypes
import numpy as np
import os
import openai 
import requests
import io
import time
import random
import logging

from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx

try: 
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
        if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'):
         if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'):
             print("WARNING: Pillow version lacks common Resampling or ANTIALIAS. MoviePy effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")

logger = logging.getLogger(__name__)
# logger.setLevel(logging.DEBUG) 

ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_11l_imp: logger.warning(f"ElevenLabs client import failed: {e_11l_imp}. Audio disabled.")

RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClientClass = None
try:
    from runwayml import RunwayML as ImportedRunwayMLAPIClientClass
    RunwayMLAPIClientClass = ImportedRunwayMLAPIClientClass; RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK imported.")
except Exception as e_rwy_imp: logger.warning(f"RunwayML SDK import failed: {e_rwy_imp}. RunwayML disabled.")

class VisualEngine:
    DEFAULT_FONT_SIZE_PIL = 10; PREFERRED_FONT_SIZE_PIL = 20
    VIDEO_OVERLAY_FONT_SIZE = 30; VIDEO_OVERLAY_FONT_COLOR = 'white'
    DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'; PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold'

    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        try: os.makedirs(self.output_dir, exist_ok=True); logger.info(f"VE output dir: {os.path.abspath(self.output_dir)}")
        # Test writability immediately (optional, but good for early failure detection)
        # test_file_path = os.path.join(self.output_dir, ".ve_write_test.txt")
        # with open(test_file_path, "w") as f_test: f_test.write("VE write test OK")
        # os.remove(test_file_path); logger.info(f"Write test to '{self.output_dir}' OK.")
        except Exception as e_mkdir: logger.critical(f"CRITICAL: Failed to create output dir '{os.path.abspath(self.output_dir)}': {e_mkdir}", exc_info=True); raise OSError(f"VE failed to init output dir '{self.output_dir}'.") from e_mkdir
        self.font_filename_pil_preference = "DejaVuSans-Bold.ttf"
        font_paths = [ self.font_filename_pil_preference, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil_preference}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
        self.resolved_font_path_pil = next((p for p in font_paths if os.path.exists(p)), None)
        self.active_font_pil = ImageFont.load_default(); self.active_font_size_pil = self.DEFAULT_FONT_SIZE_PIL; self.active_moviepy_font_name = self.DEFAULT_MOVIEPY_FONT
        if self.resolved_font_path_pil:
            try: self.active_font_pil = ImageFont.truetype(self.resolved_font_path_pil, self.PREFERRED_FONT_SIZE_PIL); self.active_font_size_pil = self.PREFERRED_FONT_SIZE_PIL; logger.info(f"Pillow font: {self.resolved_font_path_pil} sz {self.active_font_size_pil}."); self.active_moviepy_font_name = 'DejaVu-Sans-Bold' if "dejavu" in self.resolved_font_path_pil.lower() else ('Liberation-Sans-Bold' if "liberation" in self.resolved_font_path_pil.lower() else self.DEFAULT_MOVIEPY_FONT)
            except IOError as e_font: logger.error(f"Pillow font IOError '{self.resolved_font_path_pil}': {e_font}. Default.")
        else: logger.warning("Preferred Pillow font not found. Default.")
        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)
        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client_instance = None
        self.elevenlabs_voice_id = default_elevenlabs_voice_id # Set initial voice ID
        logger.info(f"VE __init__: 11L Voice ID initially set to: {self.elevenlabs_voice_id}")
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings_obj = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
        else: self.elevenlabs_voice_settings_obj = None
        self.pexels_api_key = None; self.USE_PEXELS = False
        self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None
        if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass and os.getenv("RUNWAYML_API_SECRET"):
            try: self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init from env var at startup.")
            except Exception as e_rwy_init: logger.error(f"Initial RunwayML client init failed: {e_rwy_init}"); self.USE_RUNWAYML = False
        logger.info("VisualEngine __init__ sequence complete.")

    def set_openai_api_key(self, api_key_value): self.openai_api_key = api_key_value; self.USE_AI_IMAGE_GENERATION = bool(api_key_value); logger.info(f"DALL-E status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
    
    # <<< CORRECTED METHOD SIGNATURE AND LOGIC >>>
    def set_elevenlabs_api_key(self, api_key_value, voice_id_from_secret=None):
        self.elevenlabs_api_key = api_key_value 

        if voice_id_from_secret: 
            self.elevenlabs_voice_id = voice_id_from_secret
            logger.info(f"ElevenLabs Voice ID explicitly set/updated to: {self.elevenlabs_voice_id} via set_elevenlabs_api_key.")
        # If voice_id_from_secret is None, self.elevenlabs_voice_id (set in __init__ or by user via UI) remains.
        
        if api_key_value and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try:
                self.elevenlabs_client_instance = ElevenLabsAPIClient(api_key=api_key_value)
                self.USE_ELEVENLABS = bool(self.elevenlabs_client_instance)
                logger.info(f"ElevenLabs Client service status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})")
            except Exception as e_11l_setkey_init:
                logger.error(f"ElevenLabs client initialization error during set_elevenlabs_api_key: {e_11l_setkey_init}. Service Disabled.", exc_info=True)
                self.USE_ELEVENLABS = False
                self.elevenlabs_client_instance = None 
        else:
            self.USE_ELEVENLABS = False
            self.elevenlabs_client_instance = None
            if not api_key_value: logger.info(f"ElevenLabs Service Disabled (API key not provided to set_elevenlabs_api_key).")
            elif not (ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient): logger.info(f"ElevenLabs Service Disabled (SDK issue).")
    
    def set_pexels_api_key(self, api_key_value): self.pexels_api_key = api_key_value; self.USE_PEXELS = bool(api_key_value); logger.info(f"Pexels status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
    
    def set_runway_api_key(self, api_key_value):
        self.runway_api_key = api_key_value
        if api_key_value:
            if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass:
                if not self.runway_ml_sdk_client_instance:
                    try:
                        original_env_secret_val = os.getenv("RUNWAYML_API_SECRET")
                        if not original_env_secret_val: os.environ["RUNWAYML_API_SECRET"] = api_key_value; logger.info("Temp set RUNWAYML_API_SECRET for SDK.")
                        self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init via set_key.")
                        if not original_env_secret_val: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temp RUNWAYML_API_SECRET.")
                    except Exception as e_runway_setkey_init_local: logger.error(f"RunwayML Client init in set_key fail: {e_runway_setkey_init_local}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_sdk_client_instance=None
                else: self.USE_RUNWAYML = True; logger.info("RunwayML Client already init.")
            else: logger.warning("RunwayML SDK not imported. Disabled."); self.USE_RUNWAYML = False
        else: self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None; logger.info("RunwayML Disabled (no key).")

    # --- Helper Methods (_image_to_data_uri, _map_resolution_to_runway_ratio, etc. - Ensure these are fully corrected from previous iterations) ---
    def _image_to_data_uri(self, image_path_in):
        try:
            mime_type_val, _ = mimetypes.guess_type(image_path_in)
            if not mime_type_val: ext = os.path.splitext(image_path_in)[1].lower(); mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg", ".webp": "image/webp"}; mime_type_val = mime_map.get(ext, "application/octet-stream");
            if mime_type_val == "application/octet-stream": logger.warning(f"Unknown MIME for {image_path_in}, using {mime_type_val}.")
            with open(image_path_in, "rb") as img_file_handle: img_binary_data = img_file_handle.read()
            encoded_b64_str = base64.b64encode(img_binary_data).decode('utf-8')
            final_data_uri = f"data:{mime_type_val};base64,{encoded_b64_str}"; logger.debug(f"Data URI for {os.path.basename(image_path_in)} (MIME:{mime_type_val}): {final_data_uri[:100]}..."); return final_data_uri
        except FileNotFoundError: logger.error(f"Img not found {image_path_in} for data URI."); return None
        except Exception as e_to_data_uri: logger.error(f"Error converting {image_path_in} to data URI:{e_to_data_uri}", exc_info=True); return None

    def _map_resolution_to_runway_ratio(self, width_in, height_in):
        ratio_string = f"{width_in}:{height_in}"; supported_ratios = ["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"];
        if ratio_string in supported_ratios: return ratio_string
        logger.warning(f"Res {ratio_string} not in Gen-4 list. Default 1280:720 for Runway.");return "1280:720"

    def _get_text_dimensions(self, text_str, font_pil_obj):
        def_h = getattr(font_pil_obj, 'size', self.active_font_size_pil);
        if not text_str: return 0, def_h
        try:
            if hasattr(font_pil_obj,'getbbox'): box = font_pil_obj.getbbox(text_str); w_val=box[2]-box[0]; h_val=box[3]-box[1]; return w_val, h_val if h_val > 0 else def_h
            elif hasattr(font_pil_obj,'getsize'): w_val,h_val=font_pil_obj.getsize(text_str); return w_val, h_val if h_val > 0 else def_h
            else: return int(len(text_str)*def_h*0.6), int(def_h*1.2)
        except Exception as e_get_dim: logger.warning(f"Error in _get_text_dimensions: {e_get_dim}"); return int(len(text_str)*self.active_font_size_pil*0.6),int(self.active_font_size_pil*1.2)

    def _create_placeholder_image_content(self,text_desc_val, filename_val, size_val=None):
        if size_val is None: size_val = self.video_frame_size
        placeholder_img = Image.new('RGB', size_val, color=(20, 20, 40)); placeholder_draw = ImageDraw.Draw(placeholder_img); ph_padding = 25
        ph_max_w = size_val[0] - (2 * ph_padding); ph_lines = []
        if not text_desc_val: text_desc_val = "(Placeholder Image)"
        ph_words = text_desc_val.split(); ph_current_line = ""
        for ph_word_idx, ph_word in enumerate(ph_words):
            ph_prosp_add = ph_word + (" " if ph_word_idx < len(ph_words) - 1 else "")
            ph_test_line = ph_current_line + ph_prosp_add
            ph_curr_w, _ = self._get_text_dimensions(ph_test_line, self.active_font_pil)
            if ph_curr_w == 0 and ph_test_line.strip(): ph_curr_w = len(ph_test_line) * (self.active_font_size_pil * 0.6)
            if ph_curr_w <= ph_max_w: ph_current_line = ph_test_line
            else:
                if ph_current_line.strip(): ph_lines.append(ph_current_line.strip())
                ph_current_line = ph_prosp_add
        if ph_current_line.strip(): ph_lines.append(ph_current_line.strip())
        if not ph_lines and text_desc_val:
            ph_avg_char_w, _ = self._get_text_dimensions("W", self.active_font_pil); ph_avg_char_w = ph_avg_char_w or (self.active_font_size_pil * 0.6)
            ph_chars_line = int(ph_max_w / ph_avg_char_w) if ph_avg_char_w > 0 else 20
            ph_lines.append(text_desc_val[:ph_chars_line] + ("..." if len(text_desc_val) > ph_chars_line else ""))
        elif not ph_lines: ph_lines.append("(Placeholder Error)")
        _, ph_single_h = self._get_text_dimensions("Ay", self.active_font_pil); ph_single_h = ph_single_h if ph_single_h > 0 else self.active_font_size_pil + 2
        ph_max_l = min(len(ph_lines), (size_val[1] - (2 * ph_padding)) // (ph_single_h + 2)) if ph_single_h > 0 else 1; ph_max_l = max(1, ph_max_l)
        ph_y_pos = ph_padding + (size_val[1] - (2 * ph_padding) - ph_max_l * (ph_single_h + 2)) / 2.0
        for ph_i_line in range(ph_max_l):
            ph_line_txt = ph_lines[ph_i_line]; ph_line_w, _ = self._get_text_dimensions(ph_line_txt, self.active_font_pil)
            if ph_line_w == 0 and ph_line_txt.strip(): ph_line_w = len(ph_line_txt) * (self.active_font_size_pil * 0.6)
            ph_x_pos = (size_val[0] - ph_line_w) / 2.0
            try: placeholder_draw.text((ph_x_pos, ph_y_pos), ph_line_txt, font=self.active_font_pil, fill=(200, 200, 180))
            except Exception as e_ph_draw: logger.error(f"Pillow d.text error: {e_ph_draw} for '{ph_line_txt}'")
            ph_y_pos += ph_single_h + 2
            if ph_i_line == 6 and ph_max_l > 7:
                try: placeholder_draw.text((ph_x_pos, ph_y_pos), "...", font=self.active_font_pil, fill=(200, 200, 180))
                except Exception as e_ph_elip: logger.error(f"Pillow d.text ellipsis error: {e_ph_elip}"); break
        ph_filepath = os.path.join(self.output_dir, filename_val)
        try: placeholder_img.save(ph_filepath); return ph_filepath
        except Exception as e_ph_save: logger.error(f"Saving placeholder image '{ph_filepath}' error: {e_ph_save}", exc_info=True); return None

    def _search_pexels_image(self, query_str_px, output_fn_base_px):
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        http_headers_px = {"Authorization": self.pexels_api_key}
        http_params_px = {"query": query_str_px, "per_page": 1, "orientation": "landscape", "size": "large2x"}
        base_name_for_pexels_img, _ = os.path.splitext(output_fn_base_px)
        pexels_filename_output = base_name_for_pexels_img + f"_pexels_{random.randint(1000,9999)}.jpg"
        filepath_for_pexels_img = os.path.join(self.output_dir, pexels_filename_output)
        try:
            logger.info(f"Pexels: Searching for '{query_str_px}'")
            effective_query_for_pexels = " ".join(query_str_px.split()[:5])
            http_params_px["query"] = effective_query_for_pexels
            response_from_pexels = requests.get("https://api.pexels.com/v1/search", headers=http_headers_px, params=http_params_px, timeout=20)
            response_from_pexels.raise_for_status()
            data_from_pexels = response_from_pexels.json()
            if data_from_pexels.get("photos") and len(data_from_pexels["photos"]) > 0:
                photo_details_item_px = data_from_pexels["photos"][0]
                photo_url_item_px = photo_details_item_px.get("src", {}).get("large2x")
                if not photo_url_item_px: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query_for_pexels}'. Details: {photo_details_item_px}"); return None
                image_response_get_px = requests.get(photo_url_item_px, timeout=60); image_response_get_px.raise_for_status()
                img_pil_data_from_pexels = Image.open(io.BytesIO(image_response_get_px.content))
                if img_pil_data_from_pexels.mode != 'RGB': img_pil_data_from_pexels = img_pil_data_from_pexels.convert('RGB')
                img_pil_data_from_pexels.save(filepath_for_pexels_img); logger.info(f"Pexels: Image saved to {filepath_for_pexels_img}"); return filepath_for_pexels_img
            else: logger.info(f"Pexels: No photos for '{effective_query_for_pexels}'."); return None
        except requests.exceptions.RequestException as e_req_px_loop: logger.error(f"Pexels: RequestException for '{query_str_px}': {e_req_px_loop}", exc_info=False); return None
        except Exception as e_px_gen_loop: logger.error(f"Pexels: General error for '{query_str_px}': {e_px_gen_loop}", exc_info=True); return None

    def _generate_video_clip_with_runwayml(self, motion_prompt_rwy, input_img_path_rwy, scene_id_base_fn_rwy, duration_s_rwy=5):
        if not self.USE_RUNWAYML or not self.runway_ml_sdk_client_instance: logger.warning("RunwayML skip: Not enabled/client not init."); return None
        if not input_img_path_rwy or not os.path.exists(input_img_path_rwy): logger.error(f"Runway Gen-4 needs input img. Invalid: {input_img_path_rwy}"); return None
        img_data_uri_rwy = self._image_to_data_uri(input_img_path_rwy)
        if not img_data_uri_rwy: return None
        rwy_actual_dur = 10 if duration_s_rwy >= 8 else 5; rwy_actual_ratio = self._map_resolution_to_runway_ratio(self.video_frame_size[0],self.video_frame_size[1])
        rwy_fn_base, _ = os.path.splitext(scene_id_base_fn_rwy); rwy_output_fn = rwy_fn_base + f"_runway_gen4_d{rwy_actual_dur}s.mp4"; rwy_output_fp = os.path.join(self.output_dir,rwy_output_fn)
        logger.info(f"Runway Gen-4 task: motion='{motion_prompt_rwy[:70]}...', img='{os.path.basename(input_img_path_rwy)}', dur={rwy_actual_dur}s, ratio='{rwy_actual_ratio}'")
        try:
            rwy_submitted_task = self.runway_ml_sdk_client_instance.image_to_video.create(model='gen4_turbo',prompt_image=img_data_uri_rwy,prompt_text=motion_prompt_rwy,duration=rwy_actual_dur,ratio=rwy_actual_ratio)
            rwy_task_id_val = rwy_submitted_task.id; logger.info(f"Runway task ID: {rwy_task_id_val}. Polling...")
            poll_interval_val=10;max_poll_attempts=36;poll_start_timestamp=time.time()
            while time.time()-poll_start_timestamp < max_poll_attempts*poll_interval_val:
                time.sleep(poll_interval_val);rwy_task_details_obj=self.runway_ml_sdk_client_instance.tasks.retrieve(id=rwy_task_id_val)
                logger.info(f"Runway task {rwy_task_id_val} status: {rwy_task_details_obj.status}")
                if rwy_task_details_obj.status=='SUCCEEDED':
                    rwy_video_output_url=getattr(getattr(rwy_task_details_obj,'output',None),'url',None) or (getattr(rwy_task_details_obj,'artifacts',None)and rwy_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'url')and rwy_task_details_obj.artifacts[0].url) or (getattr(rwy_task_details_obj,'artifacts',None)and rwy_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'download_url')and rwy_task_details_obj.artifacts[0].download_url)
                    if not rwy_video_output_url:logger.error(f"Runway task {rwy_task_id_val} SUCCEEDED, no output URL. Details:{vars(rwy_task_details_obj)if hasattr(rwy_task_details_obj,'__dict__')else rwy_task_details_obj}");return None
                    logger.info(f"Runway task {rwy_task_id_val} SUCCEEDED. Downloading: {rwy_video_output_url}")
                    runway_video_response=requests.get(rwy_video_output_url,stream=True,timeout=300);runway_video_response.raise_for_status()
                    with open(rwy_output_fp,'wb')as f_out_vid:
                        for data_chunk_vid in runway_video_response.iter_content(chunk_size=8192): f_out_vid.write(data_chunk_vid)
                    logger.info(f"Runway Gen-4 video saved: {rwy_output_fp}");return rwy_output_fp
                elif rwy_task_details_obj.status in['FAILED','ABORTED','ERROR']:
                    runway_error_detail=getattr(rwy_task_details_obj,'error_message',None)or getattr(getattr(rwy_task_details_obj,'output',None),'error',"Unknown Runway error.")
                    logger.error(f"Runway task {rwy_task_id_val} status:{rwy_task_details_obj.status}. Error:{runway_error_detail}");return None
            logger.warning(f"Runway task {rwy_task_id_val} timed out.");return None
        except AttributeError as e_rwy_sdk_attr: logger.error(f"RunwayML SDK AttrError:{e_rwy_sdk_attr}. SDK methods changed?",exc_info=True);return None
        except Exception as e_rwy_general: logger.error(f"Runway Gen-4 API error:{e_rwy_general}",exc_info=True);return None

    def _create_placeholder_video_content(self, text_desc_ph_vid, filename_ph_vid, duration_ph_vid=4, size_ph_vid=None):
        if size_ph_vid is None: size_ph_vid = self.video_frame_size
        filepath_ph_vid_out = os.path.join(self.output_dir, filename_ph_vid)
        text_clip_object_ph = None 
        try:
            text_clip_object_ph = TextClip(text_desc_ph_vid, fontsize=50, color='white', font=self.video_overlay_font,
                                bg_color='black', size=size_ph_vid, method='caption').set_duration(duration_ph_vid)
            text_clip_object_ph.write_videofile(filepath_ph_vid_out, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
            logger.info(f"Generic placeholder video created: {filepath_ph_vid_out}")
            return filepath_ph_vid_out
        except Exception as e_placeholder_video_creation: 
            logger.error(f"Failed to create generic placeholder video '{filepath_ph_vid_out}': {e_placeholder_video_creation}", exc_info=True)
            return None
        finally:
            if text_clip_object_ph and hasattr(text_clip_object_ph, 'close'):
                try: text_clip_object_ph.close()
                except Exception as e_close_placeholder_clip: logger.warning(f"Ignoring error closing placeholder TextClip: {e_close_placeholder_clip}")
    
    def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
                             scene_data_dictionary, scene_identifier_fn_base,
                             generate_as_video_clip_flag=False, runway_target_duration_val=5):
        base_name_current_asset, _ = os.path.splitext(scene_identifier_fn_base)
        asset_info_return_obj = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
        path_to_input_image_for_runway = None
        filename_for_base_image_output = base_name_current_asset + ("_base_for_video.png" if generate_as_video_clip_flag else ".png")
        filepath_for_base_image_output = os.path.join(self.output_dir, filename_for_base_image_output)
        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_retries_dalle, current_attempt_dalle = 2,0;
            for idx_dalle_attempt in range(max_retries_dalle):
                current_attempt_dalle = idx_dalle_attempt + 1
                try: 
                    logger.info(f"Att {current_attempt_dalle} DALL-E (base img): {image_generation_prompt_text[:70]}..."); oai_client = openai.OpenAI(api_key=self.openai_api_key,timeout=90.0); oai_response = oai_client.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid"); oai_image_url = oai_response.data[0].url; oai_revised_prompt = getattr(oai_response.data[0],'revised_prompt',None);
                    if oai_revised_prompt: logger.info(f"DALL-E revised: {oai_revised_prompt[:70]}...")
                    oai_image_get_response = requests.get(oai_image_url,timeout=120); oai_image_get_response.raise_for_status(); oai_pil_image = Image.open(io.BytesIO(oai_image_get_response.content));
                    if oai_pil_image.mode!='RGB': oai_pil_image=oai_pil_image.convert('RGB')
                    oai_pil_image.save(filepath_for_base_image_output); logger.info(f"DALL-E base img saved: {filepath_for_base_image_output}"); path_to_input_image_for_runway=filepath_for_base_image_output; asset_info_return_obj={'path':filepath_for_base_image_output,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':oai_revised_prompt}; break 
                except openai.RateLimitError as e_dalle_rl: logger.warning(f"OpenAI RateLimit Att {current_attempt_dalle}:{e_dalle_rl}.Retry...");time.sleep(5*current_attempt_dalle);asset_info_return_obj['error_message']=str(e_dalle_rl)
                except openai.APIError as e_dalle_api: logger.error(f"OpenAI APIError Att {current_attempt_dalle}:{e_dalle_api}");asset_info_return_obj['error_message']=str(e_dalle_api);break
                except requests.exceptions.RequestException as e_dalle_req: logger.error(f"Requests Err DALL-E Att {current_attempt_dalle}:{e_dalle_req}");asset_info_return_obj['error_message']=str(e_dalle_req);break
                except Exception as e_dalle_gen: logger.error(f"General DALL-E Err Att {current_attempt_dalle}:{e_dalle_gen}",exc_info=True);asset_info_return_obj['error_message']=str(e_dalle_gen);break
            if asset_info_return_obj['error']: logger.warning(f"DALL-E failed after {current_attempt_dalle} attempts for base img.")
        if asset_info_return_obj['error'] and self.USE_PEXELS:
            logger.info("Trying Pexels for base img.");pexels_query_text_val = scene_data_dictionary.get('pexels_search_query_๊ฐ๋…',f"{scene_data_dictionary.get('emotional_beat','')} {scene_data_dictionary.get('setting_description','')}");pexels_path_result = self._search_pexels_image(pexels_query_text_val, filename_for_base_image_output);
            if pexels_path_result:path_to_input_image_for_runway=pexels_path_result;asset_info_return_obj={'path':pexels_path_result,'type':'image','error':False,'prompt_used':f"Pexels:{pexels_query_text_val}"}
            else:current_error_msg_pexels=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_pexels+" Pexels failed for base.").strip()
        if asset_info_return_obj['error']:
            logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");placeholder_prompt_text_val =asset_info_return_obj.get('prompt_used',image_generation_prompt_text);placeholder_path_result=self._create_placeholder_image_content(f"[Base Placeholder]{placeholder_prompt_text_val[:70]}...",filename_for_base_image_output);
            if placeholder_path_result:path_to_input_image_for_runway=placeholder_path_result;asset_info_return_obj={'path':placeholder_path_result,'type':'image','error':False,'prompt_used':placeholder_prompt_text_val}
            else:current_error_msg_ph=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_ph+" Base placeholder failed.").strip()
        if generate_as_video_clip_flag:
            if not path_to_input_image_for_runway:logger.error("RunwayML video: base img failed.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info_return_obj['type']='none';return asset_info_return_obj
            if self.USE_RUNWAYML:
                runway_generated_video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,path_to_input_image_for_runway,base_name_current_asset,runway_target_duration_val)
                if runway_generated_video_path and os.path.exists(runway_generated_video_path):asset_info_return_obj={'path':runway_generated_video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':path_to_input_image_for_runway}
                else:logger.warning(f"RunwayML video failed for {base_name_current_asset}. Fallback to base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text
            else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text
        return asset_info_return_obj

    def generate_narration_audio(self, narration_text, output_fn="narration_overall.mp3"):
        if not self.USE_ELEVENLABS or not self.elevenlabs_client_instance or not narration_text: logger.info("11L conditions not met. Skip audio."); return None
        narration_fp = os.path.join(self.output_dir, output_fn)
        try:
            logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): \"{narration_text[:70]}...\"")
            stream_method = None
            if hasattr(self.elevenlabs_client_instance,'text_to_speech') and hasattr(self.elevenlabs_client_instance.text_to_speech,'stream'): stream_method=self.elevenlabs_client_instance.text_to_speech.stream; logger.info("Using 11L .text_to_speech.stream()")
            elif hasattr(self.elevenlabs_client_instance,'generate_stream'): stream_method=self.elevenlabs_client_instance.generate_stream; logger.info("Using 11L .generate_stream()")
            elif hasattr(self.elevenlabs_client_instance,'generate'):
                logger.info("Using 11L .generate() (non-streaming).")
                voice_p = Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings_obj) if Voice and self.elevenlabs_voice_settings_obj else str(self.elevenlabs_voice_id)
                audio_b = self.elevenlabs_client_instance.generate(text=narration_text,voice=voice_p,model="eleven_multilingual_v2")
                with open(narration_fp,"wb") as f_audio: f_audio.write(audio_b); logger.info(f"11L audio (non-stream): {narration_fp}"); return narration_fp
            else: logger.error("No recognized 11L audio method."); return None # This path should ideally not be reached if client initialized
            
            # This block only executes if a streaming method was found
            if stream_method:
                voice_stream_params={"voice_id":str(self.elevenlabs_voice_id)}
                if self.elevenlabs_voice_settings_obj:
                    if hasattr(self.elevenlabs_voice_settings_obj,'model_dump'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.model_dump()
                    elif hasattr(self.elevenlabs_voice_settings_obj,'dict'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.dict()
                    else: voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj
                audio_iter = stream_method(text=narration_text,model_id="eleven_multilingual_v2",**voice_stream_params)
                with open(narration_fp,"wb") as f_audio_stream:
                    for chunk_item in audio_iter:
                        if chunk_item: f_audio_stream.write(chunk_item)
                logger.info(f"11L audio (stream): {narration_fp}"); return narration_fp
            else: # Should be caught by the first check, but as a safeguard
                logger.error("Logical error: No streaming method assigned but non-streaming path not taken."); return None
        except AttributeError as e_11l_attr: logger.error(f"11L SDK AttrError: {e_11l_attr}. SDK/methods changed?", exc_info=True); return None
        except Exception as e_11l_gen: logger.error(f"11L audio gen error: {e_11l_gen}", exc_info=True); return None

    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        if not asset_data_list: logger.warning("No assets for animatic."); return None
        processed_moviepy_clips_list = []; narration_audio_clip_mvpy = None; final_video_output_clip = None
        logger.info(f"Assembling from {len(asset_data_list)} assets. Target Frame: {self.video_frame_size}.")

        for i_asset, asset_info_item_loop in enumerate(asset_data_list):
            path_of_asset, type_of_asset, duration_for_scene = asset_info_item_loop.get('path'), asset_info_item_loop.get('type'), asset_info_item_loop.get('duration', 4.5)
            num_of_scene, action_in_key = asset_info_item_loop.get('scene_num', i_asset + 1), asset_info_item_loop.get('key_action', '')
            logger.info(f"S{num_of_scene}: Path='{path_of_asset}', Type='{type_of_asset}', Dur='{duration_for_scene}'s")

            if not (path_of_asset and os.path.exists(path_of_asset)): logger.warning(f"S{num_of_scene}: Not found '{path_of_asset}'. Skip."); continue
            if duration_for_scene <= 0: logger.warning(f"S{num_of_scene}: Invalid duration ({duration_for_scene}s). Skip."); continue
            
            active_scene_clip = None
            try:
                if type_of_asset == 'image':
                    pil_img_original = Image.open(path_of_asset); logger.debug(f"S{num_of_scene} (0-Load): Original. Mode:{pil_img_original.mode}, Size:{pil_img_original.size}"); pil_img_original.save(os.path.join(self.output_dir,f"debug_0_ORIGINAL_S{num_of_scene}.png"))
                    img_rgba_intermediate = pil_img_original.convert('RGBA') if pil_img_original.mode != 'RGBA' else pil_img_original.copy().convert('RGBA'); logger.debug(f"S{num_of_scene} (1-ToRGBA): Mode:{img_rgba_intermediate.mode}, Size:{img_rgba_intermediate.size}"); img_rgba_intermediate.save(os.path.join(self.output_dir,f"debug_1_AS_RGBA_S{num_of_scene}.png"))
                    thumbnailed_img_rgba = img_rgba_intermediate.copy(); resample_filter_pil = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumbnailed_img_rgba.thumbnail(self.video_frame_size, resample_filter_pil); logger.debug(f"S{num_of_scene} (2-Thumbnail): Mode:{thumbnailed_img_rgba.mode}, Size:{thumbnailed_img_rgba.size}"); thumbnailed_img_rgba.save(os.path.join(self.output_dir,f"debug_2_THUMBNAIL_RGBA_S{num_of_scene}.png"))
                    canvas_for_compositing_rgba = Image.new('RGBA', self.video_frame_size, (0,0,0,0)); pos_x_paste = (self.video_frame_size[0] - thumbnailed_img_rgba.width) // 2; pos_y_paste = (self.video_frame_size[1] - thumbnailed_img_rgba.height) // 2; canvas_for_compositing_rgba.paste(thumbnailed_img_rgba, (pos_x_paste, pos_y_paste), thumbnailed_img_rgba); logger.debug(f"S{num_of_scene} (3-PasteOnRGBA): Mode:{canvas_for_compositing_rgba.mode}, Size:{canvas_for_compositing_rgba.size}"); canvas_for_compositing_rgba.save(os.path.join(self.output_dir,f"debug_3_COMPOSITED_RGBA_S{num_of_scene}.png"))
                    final_rgb_image_for_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0)); 
                    if canvas_for_compositing_rgba.mode == 'RGBA': final_rgb_image_for_pil.paste(canvas_for_compositing_rgba, mask=canvas_for_compositing_rgba.split()[3])
                    else: final_rgb_image_for_pil.paste(canvas_for_compositing_rgba)
                    logger.debug(f"S{num_of_scene} (4-ToRGB): Final RGB. Mode:{final_rgb_image_for_pil.mode}, Size:{final_rgb_image_for_pil.size}")
                    debug_path_img_pre_numpy = os.path.join(self.output_dir,f"debug_4_PRE_NUMPY_RGB_S{num_of_scene}.png"); final_rgb_image_for_pil.save(debug_path_img_pre_numpy); logger.info(f"CRITICAL DEBUG: Saved PRE_NUMPY_RGB_S{num_of_scene} to {debug_path_img_pre_numpy}")
                    
                    numpy_frame_arr = np.array(final_rgb_image_for_pil, dtype=np.uint8)
                    if not numpy_frame_arr.flags['C_CONTIGUOUS']: numpy_frame_arr = np.ascontiguousarray(numpy_frame_arr, dtype=np.uint8)
                    logger.debug(f"S{num_of_scene} (5-NumPy): Final NumPy. Shape:{numpy_frame_arr.shape}, DType:{numpy_frame_arr.dtype}, Flags:{numpy_frame_arr.flags}")
                    if numpy_frame_arr.size == 0 or numpy_frame_arr.ndim != 3 or numpy_frame_arr.shape[2] != 3: logger.error(f"S{num_of_scene}: Invalid NumPy shape/size ({numpy_frame_arr.shape}). Skipping."); continue
                    
                    base_image_clip_mvpy = ImageClip(numpy_frame_arr, transparent=False, ismask=False).set_duration(duration_for_scene)
                    logger.debug(f"S{num_of_scene} (6-ImageClip): Base ImageClip. Duration: {base_image_clip_mvpy.duration}")

                    debug_path_moviepy_frame = os.path.join(self.output_dir,f"debug_7_MOVIEPY_FRAME_S{num_of_scene}.png")
                    try: # Corrected try-except for save_frame
                        save_frame_time = min(0.1, base_image_clip_mvpy.duration / 2 if base_image_clip_mvpy.duration > 0 else 0.1)
                        base_image_clip_mvpy.save_frame(debug_path_moviepy_frame, t=save_frame_time) 
                        logger.info(f"CRITICAL DEBUG: Saved frame FROM MOVIEPY ImageClip S{num_of_scene} to {debug_path_moviepy_frame}")
                    except Exception as e_save_mvpy_frame:
                        logger.error(f"DEBUG: Error saving frame FROM MOVIEPY ImageClip S{num_of_scene}: {e_save_mvpy_frame}", exc_info=True)
                    
                    fx_image_clip_mvpy = base_image_clip_mvpy
                    try: # Ken Burns try block
                        scale_end_kb_val = random.uniform(1.03, 1.08)
                        if duration_for_scene > 0: fx_image_clip_mvpy = base_image_clip_mvpy.fx(vfx.resize, lambda t_val: 1 + (scale_end_kb_val - 1) * (t_val / duration_for_scene)).set_position('center'); logger.debug(f"S{num_of_scene} (8-KenBurns): Ken Burns applied.")
                        else: logger.warning(f"S{num_of_scene}: Duration zero, skipping Ken Burns.")
                    except Exception as e_kb_fx_loop: # Except for Ken Burns
                        logger.error(f"S{num_of_scene} Ken Burns error: {e_kb_fx_loop}", exc_info=False)
                    active_scene_clip = fx_image_clip_mvpy
                elif type_of_asset == 'video':
                    source_video_clip_obj=None
                    try:
                        logger.debug(f"S{num_of_scene}: Loading VIDEO asset: {path_of_asset}")
                        source_video_clip_obj=VideoFileClip(path_of_asset,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
                        temp_video_clip_obj_loop=source_video_clip_obj
                        if source_video_clip_obj.duration!=duration_for_scene:
                            if source_video_clip_obj.duration>duration_for_scene:temp_video_clip_obj_loop=source_video_clip_obj.subclip(0,duration_for_scene)
                            else:
                                if duration_for_scene/source_video_clip_obj.duration > 1.5 and source_video_clip_obj.duration>0.1:temp_video_clip_obj_loop=source_video_clip_obj.loop(duration=duration_for_scene)
                                else:temp_video_clip_obj_loop=source_video_clip_obj.set_duration(source_video_clip_obj.duration);logger.info(f"S{num_of_scene} Video clip ({source_video_clip_obj.duration:.2f}s) shorter than target ({duration_for_scene:.2f}s).")
                        active_scene_clip=temp_video_clip_obj_loop.set_duration(duration_for_scene)
                        if active_scene_clip.size!=list(self.video_frame_size):active_scene_clip=active_scene_clip.resize(self.video_frame_size)
                        logger.debug(f"S{num_of_scene}: Video asset processed. Final duration: {active_scene_clip.duration:.2f}s")
                    except Exception as e_vid_load_loop:logger.error(f"S{num_of_scene} Video load error '{path_of_asset}':{e_vid_load_loop}",exc_info=True);continue
                    finally:
                        if source_video_clip_obj and source_video_clip_obj is not active_scene_clip and hasattr(source_video_clip_obj,'close'):
                            try: source_video_clip_obj.close()
                            except Exception as e_close_src_vid: logger.warning(f"S{num_of_scene}: Error closing source VideoFileClip: {e_close_src_vid}")
                else: logger.warning(f"S{num_of_scene} Unknown asset type '{type_of_asset}'. Skipping."); continue
                
                if active_scene_clip and action_in_key: # Text Overlay
                    try:
                        dur_text_overlay_val=min(active_scene_clip.duration-0.5,active_scene_clip.duration*0.8)if active_scene_clip.duration>0.5 else (active_scene_clip.duration if active_scene_clip.duration > 0 else 0)
                        start_text_overlay_val=0.25 if active_scene_clip.duration > 0.5 else 0
                        if dur_text_overlay_val > 0:
                            text_clip_for_overlay_obj=TextClip(f"Scene {num_of_scene}\n{action_in_key}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.active_moviepy_font_name,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(dur_text_overlay_val).set_start(start_text_overlay_val).set_position(('center',0.92),relative=True)
                            active_scene_clip=CompositeVideoClip([active_scene_clip,text_clip_for_overlay_obj],size=self.video_frame_size,use_bgclip=True)
                            logger.debug(f"S{num_of_scene}: Text overlay composited.")
                        else: logger.warning(f"S{num_of_scene}: Text overlay duration zero or negative ({dur_text_overlay_val}). Skipping text overlay.")
                    except Exception as e_txt_comp_loop:logger.error(f"S{num_of_scene} TextClip compositing error:{e_txt_comp_loop}. Proceeding without text for this scene.",exc_info=True)
                
                if active_scene_clip: processed_moviepy_clips_list.append(active_scene_clip); logger.info(f"S{num_of_scene}: Asset successfully processed. Clip duration: {active_scene_clip.duration:.2f}s. Added to final list.")
            except Exception as e_asset_loop_main_exc: logger.error(f"MAJOR UNHANDLED ERROR processing asset for S{num_of_scene} (Path: {path_of_asset}): {e_asset_loop_main_exc}", exc_info=True)
            finally:
                if active_scene_clip and active_scene_clip not in processed_moviepy_clips_list and hasattr(active_scene_clip,'close'): # Only close if not added to list
                    try: active_scene_clip.close(); logger.debug(f"S{num_of_scene}: Closed active_scene_clip in asset loop finally block because it wasn't added.")
                    except Exception as e_close_active_err: logger.warning(f"S{num_of_scene}: Error closing active_scene_clip in error handler: {e_close_active_err}")
        
        if not processed_moviepy_clips_list: logger.warning("No MoviePy clips were successfully processed. Aborting animatic assembly before concatenation."); return None
        transition_duration_val=0.75
        try:
            logger.info(f"Concatenating {len(processed_moviepy_clips_list)} processed clips for final animatic.");
            if len(processed_moviepy_clips_list)>1: final_video_output_clip=concatenate_videoclips(processed_moviepy_clips_list, padding=-transition_duration_val if transition_duration_val > 0 else 0, method="compose")
            elif processed_moviepy_clips_list: final_video_output_clip=processed_moviepy_clips_list[0]
            if not final_video_output_clip: logger.error("Concatenation resulted in a None clip. Aborting."); return None
            logger.info(f"Concatenated animatic base duration:{final_video_output_clip.duration:.2f}s")
            if transition_duration_val > 0 and final_video_output_clip.duration > 0:
                if final_video_output_clip.duration > transition_duration_val * 2: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,transition_duration_val).fx(vfx.fadeout,transition_duration_val)
                else: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,min(transition_duration_val,final_video_output_clip.duration/2.0))
                logger.debug("Applied fade in/out effects to final composite clip.")
            if overall_narration_path and os.path.exists(overall_narration_path) and final_video_output_clip.duration > 0:
                try: narration_audio_clip_mvpy=AudioFileClip(overall_narration_path); logger.info(f"Adding overall narration. Video duration: {final_video_output_clip.duration:.2f}s, Narration duration: {narration_audio_clip_mvpy.duration:.2f}s"); final_video_output_clip=final_video_output_clip.set_audio(narration_audio_clip_mvpy); logger.info("Overall narration successfully added to animatic.")
                except Exception as e_narr_add_final:logger.error(f"Error adding overall narration to animatic:{e_narr_add_final}",exc_info=True)
            elif final_video_output_clip.duration <= 0: logger.warning("Animatic has zero or negative duration before adding audio. Audio will not be added.")
            if final_video_output_clip and final_video_output_clip.duration > 0:
                final_output_path_str=os.path.join(self.output_dir,output_filename); logger.info(f"Writing final animatic video to: {final_output_path_str} (Target Duration: {final_video_output_clip.duration:.2f}s)")
                num_threads = os.cpu_count(); num_threads = num_threads if isinstance(num_threads, int) and num_threads >= 1 else 2
                final_video_output_clip.write_videofile(final_output_path_str, fps=fps, codec='libx264', preset='medium', audio_codec='aac', temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'), remove_temp=True, threads=num_threads, logger='bar', bitrate="5000k", ffmpeg_params=["-pix_fmt", "yuv420p"])
                logger.info(f"Animatic video created successfully: {final_output_path_str}"); return final_output_path_str
            else: logger.error("Final animatic clip is invalid or has zero duration. Cannot write video file."); return None
        except Exception as e_vid_write_final_op: logger.error(f"Error during final animatic video file writing or composition stage: {e_vid_write_final_op}", exc_info=True); return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` main finally block.")
            # Only attempt to close clips that are actual MoviePy clip instances and haven't been closed
            # The processed_moviepy_clips_list contains the clips *before* concatenation/final effects.
            # The final_video_output_clip is the result of these operations.
            # Narration clip is separate.
            
            # Close clips from the list first
            for clip_obj in processed_moviepy_clips_list:
                if clip_obj and hasattr(clip_obj, 'close'):
                    try: clip_obj.close()
                    except Exception as e_cl_proc: logger.warning(f"Ignoring error closing a processed clip ({type(clip_obj).__name__}): {e_cl_proc}")
            
            # Close narration clip if it exists
            if narration_audio_clip_mvpy and hasattr(narration_audio_clip_mvpy, 'close'):
                try: narration_audio_clip_mvpy.close()
                except Exception as e_cl_narr: logger.warning(f"Ignoring error closing narration clip: {e_cl_narr}")

            # Close the final composite clip if it exists and is different from single processed clip
            if final_video_output_clip and hasattr(final_video_output_clip, 'close'):
                # Avoid double-closing if it was the only clip in processed_moviepy_clips_list
                if not (len(processed_moviepy_clips_list) == 1 and final_video_output_clip is processed_moviepy_clips_list[0]):
                    try: final_video_output_clip.close()
                    except Exception as e_cl_final: logger.warning(f"Ignoring error closing final composite clip: {e_cl_final}")